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A B S T R A C T   

Wind power is a rapidly growing renewable energy sector that reduces greenhouse gas emissions 
and provides sustainable energy. However, environmental destruction in wind power plant areas, 
particularly in wind farms within forests, is an emerging issue. This study aimed to analyze the 
impact of wind-farm roads on terrestrial animals in forested areas. A camera trap survey was 
conducted to investigate the impact of road management on wildlife behavior. We installed 52 
cameras along roads connecting wind turbines for three months (1st October to 30th December 
2021) on the Yeongyang-gun wind farm in South Korea and evaluated animal occupancy and 
detection probabilities using an occupancy model. Factors related to terrain and vegetation were 
used to estimate the occupancy probability (station use). The detection analysis included the 
presence or absence of guardrails, wind turbines, shrublands, and retaining walls. Additional 
variables included camera type, number of camera-operating days, and survey time. During the 
survey period, seven terrestrial mammals (roe deer, wild boar, water deer, raccoon dogs, badgers, 
leopards, cats, and martens) were captured using cameras. Based on camera trap records, roe deer 
was the most dominant species, followed by wild boars, raccoon dogs, and water deer, with fewer 
badgers and martens. The presence of forests in the road area was a significant factor for most 
species in terms of use probability, and camera type was significant for detection probability. 
Detecting animals along roads shows that roads are passageways for wildlife, affecting animal 
behavior during vehicle movement and can cause habitat disconnection. Our results demonstrate 
that wind farms are indirectly linked to wildlife distribution and welfare. Effective management 
policies for mitigating wildlife disruption can support sustainable ecosystems and biodiversity. 
The results of this study can serve as a reference for supporting wildlife conservation, terrestrial 
ecosystems, and environmental impact assessments.   

1. Introduction 

Renewable energy sources, such as wind and solar energy, are considered alternative solutions to conventional fossil fuels to meet 
energy demands. However, some environmental destruction is unavoidable when renewable energy sources are used. As a rapidly 
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growing source of renewable energy, wind farms have various adverse effects, including bird death due to direct collisions with 
turbines, turbine noise, habitat destruction from farm management roads, and other anthropogenic infrastructure (Park et al., 2013; 
Nazir et al., 2020; Husby and Pearson, 2022). 

Most environmental impact studies on wind farms have focused primarily on the habitat and mortality of flying species such as 
birds and bats (Kunz et al., 2007; Baerwald et al., 2008; Pearce-Higgins et al., 2009; Carrete et al., 2012; Masden et al., 2021). Few 
studies have evaluated the effects of wind farms on terrestrial animals (Agha et al., 2015; Agha et al., 2017; Hall et al., 2020), yet the 
construction of wind farms has resulted in habitat destruction and impeded animal movement. Road construction for wind farm 
installation and maintenance causes habitat fragmentation, fire risk, noise, visual impact, and vibration and requires additional 
infrastructure, such as power lines and substations (De Lucas et al., 2005; Lovich and Ennen, 2013). Several studies have evaluated the 
response of terrestrial mammals to wind farms. For example, the response of female pronghorns to wind turbines within their winter 
ranges was evaluated using Global Positioning System (GPS) collars, which revealed that pronghorns tended to avoid wind generators 
(Smith et al., 2020). European roe deer and hares were tracked on the camera more frequently as the distance from the wind generator 
increased (Łopucki et al., 2017). 

Camera trapping is a method for detecting passing wild animals using a passive infrared sensor for imaging and recording 
(Rowcliffe et al., 2008). Because CTs automatically detects and captures images of wild animals, it is widely used for wildlife moni
toring as a low-cost, non-invasive technique that requires minimal labor (Kucera et al., 2011; Burton et al., 2015). Camera traps can be 
used to observe wildlife communities within a target area (Tobler et al., 2008) and are particularly well-suited for monitoring 
terrestrial mammals that are primarily nocturnal, agile, and difficult to observe (Rich et al., 2016; Mazzamuto et al., 2019). Corre
lations between camera-captured species behaviors and environmental factors in ecological research have been evaluated using 
various techniques, ranging from traditional statistical methods, such as linear regression, Bayesian occupancy models, analysis of 
variance, and other parametric and non-parametric approaches, to machine learning-based methods, such as decision trees, random 
forests, and neural networks (Dormann et al., 2018; Mohankumar and Hefley, 2022). 

Occupancy models identify species occupancy based on spatial variations in living environments. These models are frequently 
employed in ecological research, particularly in conservation biology, where they help guide conservation planning and management 
by identifying regions crucial for preserving a particular species (MacKenzie and Nichols, 2004; MacKenzie et al., 2017). For example, 
an occupancy model was used to analyze the impact of habitat loss and fragmentation on the giant anteater (Myrmecophaga tridactyla) 
using a single-season dataset (MacKenzie et al., 2002). 

The single-season occupancy model in the PRESENCE program (MacKenzie et al., 2017) was used to study tufted-tailed rats (Eliurus 
spp.), red forest rats (Nesomys spp.), greater hedgehog tenrecs (Setifer setosus), and common tenrecs (Tenrec ecaudatus) to explain the 
differences in occupancy according to habitat characteristics and habitat degradation (Murphy et al., 2017). A single-species, sin
gle-season occupancy analysis was performed using the unmarked R package (Fiske and Chandler, 2011) to estimate the probability of 

Fig. 1. Study area (GS-Wind farm) in Yeongyang-gun, South Korea. Colored dots indicate the locations of different brands of cameras installed on 
the wind farm management road (Map generated in QGIS Desktop 3. 24.1., land cover maps obtained from an open access CC BY 4.0 licensed 
https://livingatlas.arcgis.com/ and base map from https://gadm.org/ data portal). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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occupancy and detection of the European wildcat (Felis silvestris) with respect to habitat fragmentation and anthropogenic factors 
(Anile et al., 2019). Scully et al. (2018) investigated the factors influencing habitat selection by the Canadian lynx (Lynx canadensis) 
and their spatial correlation with surrounding animals using single-species occupancy models (Richmond et al., 2010) and two-species 
occupancy models (Scully et al., 2018). Other groups have used multispecies hierarchical occupancy models (Dorazio and Royle, 2005) 
with a Bayesian approach to estimate occupancy and abundance at the species, community, and group levels (Rich et al., 2016). By 
analyzing the importance and significant implications, the current study investigated the impact of wind farm roads on wild animals 
using this broadly applied single-species, single-season occupancy model. 

The generation of scientific data and the collection and mapping of species in wind farm areas support the implementation of 
science-informed practices to mitigate negative impacts on wildlife (Teff-Seker et al., 2022). Previous case studies have focused on the 
effects of wind turbines on the wildlife of large-plain landscapes and seashores; however, little is known about their effects on the 
wildlife of forested areas (Schöll and Nopp-Mayr, 2021). Many wind power plants in Korea are installed on mountain ridges because of 
the high wind speeds and multi-directional exposure (Kim et al., 2017). However, knowledge of the impact of wind farm management 
roads on wild animals in forested areas is still limited. Management in areas under the strong influence of human infrastructure re
quires appropriate planning of the method of obtaining research in the field, but also proper analysis of data (Teff-Seker et al., 2022, 
Bogdanović et al., 2023). Therefore, the current study aimed to present data of wild mammalian species using camera surveillance 
records and the occupancy model from the Yeongyang-gun wind farm in Korea. 

2. Materials and methods 

2.1. Study area 

This study was conducted on a section of an established wind farm in Yeongyang-gun, Korea (Fig. 1). Yeongyang-gun is a county 
located in the eastern part of North Gyeongsang Province and has mountainous terrain (36◦36′49″N, 129◦13′21″E). The mountain is 
covered with a mixed forest dominated by coniferous plants such as Pine and Larch, followed by broad-leaved plants such as Oak and 
Walnut trees. The study area is a habitat of predators such as martens (Martes flavigula), leopard cats (Prionailurus bengalensis), and 
terrestrial mammals such as roe deer (Capreolus pygargus), water deer (Hydropotes inermis), and wild boars (Sus scrofa). This region is 
also a habitat for several small- to medium-sized terrestrial mammals, including raccoons (Nyctereutes procyonoides), badgers (Meles 
leucurus), hares (Lepus), chipmunks (Eutamias sibiricus), and squirrels (Sciurus vulgaris). A total of 18 wind turbines with a 3.3 MW 
nameplate capacity and an average tower height of 84 m were established (the project was commissioned in 2015) on a mountain ridge 
at an altitude of 520–665 m above sea level in the study area. The Yeongyang Wind Farm_GS (the GS wind farm) is equipped with 

Fig. 2. Camera installation, orientation, and animal detection in survey area a) Camera installation and camera height, b) Cameras installed near to 
wind turbine positioning to capture forward and backward sites, c) Camera captured wide road in curve section, d) Wildlife (roe deer) captured on 
camera while moving along the road. 
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Vestas Wind Systems V112–3.3 MW wind turbines (GlobalData, 2023). Based on the resource availability, a camera trap survey was 
conducted along the dead-end management road section connecting the six turbines (Fig. 1). 

2.2. Camera trap survey 

Based on resource availability, a total of 52 CTs encompassing five different brands (Reconyx (#12), Browning (#17), Moultrie 
(#16), Bushnell (#5), and Spypoint (#2)) were randomly installed at approximately 25 m intervals along a 1.3 km segment of farm 
management road in the forest area, and these CTs monitored and captured animal images over three months from 1st October to 30th 
December 2021, in photo mode (Rovero and Zimmermann, 2016). Animals captured within half an hour of each photo at the same 
station that could not be differentiated individually were considered the same individual or observation otherwise different (Shannon 
et al., 2014). Camera brands contain important information in CT studies; however, their effects are difficult to interpret (Burton et al., 
2015). A random installation was performed to eliminate the problems caused by the different CT scanners used in this study. All 
cameras were installed with identical initial settings and high infrared sensitivity, recovery time (0.5 s), trigger speed (0.3 s), and delay 
period (5 s) with an auto sensor and high night vision mode. 

The CT installation covered a variety of road types, including paved and unpaved surfaces with and without guardrails and 
encompassed sloped areas. By adjusting the surrounding landmarks, CTs were installed at the height of approximately 50 cm above the 
ground, with cameras facing downhill, adjusting the line of sight about the range of 20 m that captured the object moving on the road 
(see camera orientation and capture range in Fig. 2). The battery and Secure Digital (SD) cards for the CT were replaced once a month. 
All CT-detected objects were classified according to the camera station, detection time, and species (identified as terrestrial mammals). 
CamtrapR (Niedballa et al., 2016) aggregated the appearance/non-appearance data. 

2.3. Covariates 

Based on the suggestions of local ecologists and experts, we mined the environmental features surrounding the CT installation 
points for three scenarios: 10, 30, and 50 m raster grids to examine the grid effect on feature mapping and occupancy model. Infor
mation on the terrain, namely slope, topographic position index (TPI), terrain ruggedness index (TRI), roughness (Wilson et al., 2007), 
curvature types (plan curve, procurve, and tan curve) (Minár et al., 2020), and vegetation factors (forest, grassland, canopy height, and 
normalized difference vegetation index (NDVI)) were used to estimate the station use probability (Table 1). Similarly, the presence of 
man-made facilities on the management road, in addition to camera stations, guardrails, wind power turbines, and retaining walls, as 
well as camera specifications such as camera type (1 = Reconyx, 2 = Browning, 3 = Moultrie, 4 = Bushnell, 5 = Spypoint), camera 
effort (number of days the camera was in operation), and survey time covariates including temporary vegetation factor shrubs, were 
considered in analyzing the detection probability (Table 1). Station-use covariates were continuous variables, whereas detection was 
categorical. The shrub, guardrail, retaining wall, and wind power were the ordinal dummy variables assigned by surveyors as the 
absence around (0), the presence at the same roadside (1), and opposite (2) to the camera station within the camera capture range 
(average 20 m). 

Table 1 
Parameters used to estimate the station use and detection probabilities.  

Station use parameters* 
Variable (Unit) Mean Range Software Data Source Reference 
Slope (◦) 10.2 0–21.3 ArcGIS pro DEM Burrough et al. (2015) 
TRI (m) 1.5 0–3.2 R (raster) DEM Wilson et al. (2007) 
TPI (m) 0.5 -0.9–2.3 R (raster) DEM Wilson et al. (2007) 
Roughness (m) 5.1 0–11.3 R (raster) DEM Wilson et al. (2007) 
Plancurve (m− 1) 0.1 -0.6–1.6 ArcGIS pro DEM Minár et al. (2020) 
Procurve (m− 1) 0.009 0–0.1 ArcGIS pro DEM Minár et al. (2020) 
Tancurve (m− 1) 0.003 -0.03–0.04 ArcGIS pro DEM Minár et al. (2020) 
Forest ( %) 0.02 0–0.4 - LCLU (https://egis.me.go.kr/intro/land.do) 
Grass ( %) 0.7 0.2–1 - LCLU (https://egis.me.go.kr/intro/land.do) 
Canopy (m) 6.6 0–18 - GLAD Potapov et al. (2021) 
NDVI (Dml) 0.5 0.3–0.7 ArcGIS pro Sentinel-2 Trishchenko et al. (2002)  

Detection parameter 
Variable Mean Range description 
Shrub 1.12 0–2 Camera station investigation 
Guardrail 0.5 0–2 Camera station investigation 
Retaining wall 0.65 0–2 Camera station investigation 
Wind power 0.46 0–2 Camera station investigation 
Cam_Effort   Number of camera operation days in the detection window (7 days) 
Camtype – – Type of camera (1 = Reconyx, 2 = Browning, 3 = Moultrie, 4 = Bushnell, 5 = Spypoint) 
Survey time – – Survey time (total no of detection time windows)  

* Mean and ranges of parameters for 52 camera stations based on 10 m grid size; TRI: terrain ruggedness index; TPI: topographic position index; 
NDVI: normalized difference vegetation index. 
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2.4. Modeling framework 

The effects of wind-farm roads on wildlife were examined using occupancy models and conditions. Errors in estimation due to the 
imperfect detection of species are a significant issue in ecological research, particularly when species are rare and low in number. 
Although occupancy models account for false negatives, in which an existing species is identified as non-existent because the inves
tigator was unable to find it or because it was not captured by the camera, it is important to minimize these false negatives (MacKenzie 
et al., 2002; Kéry and Royle, 2015). The occupancy model can estimate probabilities, even at locations where no wild animals are 
present, by estimating the probability of detection; therefore, it is primarily used to explain incomplete detection (MacKenzie et al., 
2002). In an occupancy model, the home range polygon of a species is typically applied. The current study used camera station points; 
however, because the cameras were located along roads, the home range of each species was not assumed. Therefore, we considered 
the station use probability instead of the occupancy probability (Ψ i), as suggested by Tobler et al. (2015). The station use probability 
(Ψ i) of station i, the station use rate (z) was calculated as follows: 

zi ∼ Bernoulli(Ψi) (1)  

where Zi represents the observed use level at station i. 

yi,k|zi ∼ Bernoulli(zi × pi,k) (2) 

pi,k represents the probability of detection by a camera during the kth survey period at station i and yi,k indicates the presence or 
absence of a species during the kth survey period at station i. We used the dates on which all the cameras were monitored for 24 h per 
day. To reduce non-appearance and facilitate modeling, the appearance/non-appearance data for seven days were merged and defined 
as a single-detection-window dataset (Shannon, 2014). 

The logistic regression equations below examined influencing the use status (Ψ i) and detection probability (pi,k). 

logit(Ψi) = α0 +w1 × α1 × slopei +w2 × α2 × foresti +w3 × α3 × grassi +w4 × α4 × canopyi +w5 × α5 × NDVIi +w6 × α6

× TRIi +w7 × α7 × TPIi +w8 × α8 × roughnessi +w9 × α9 × plancurvi +w10 × α10 × procurvi +w11 × α11 × tancurvi

(3)  

logit
(
pi,k

)
= β0 +w12 × β1 × shrubi +w13 × β2 × guardraili +w14 × β3 × steepslopei +w15 × β4 × windpoweri +w16 × β5

× efforti,k +w17 × β6 × camtypei + β7 × survey.ti,k (4) 

A Markov chain Monte Carlo (MCMC) trial was used to estimate the prior distribution for each dataset. The importance of cova
riates for station use and detection probabilities was assessed using the Bayesian inclusion parameter (wc) coefficient for variable 
selection (Kuo and Mallick, 1998). The prior probability of a Bernoulli distribution with a success probability of 0.5 was used to 
calculate the wc. This parameter was assigned a binary value of zero or one to indicate whether each covariate was included in the 
corresponding model. The final model was built by first selecting covariates through wc (wc > 0.5) in Eq. (3) and then through wc (wc >

0.5) in Eq. (4): Using the final model, we compared station usage and detection probabilities for each dataset. 
To avoid dependence on the initial values in the MCMC chains, a uniform distribution ranging from 0 to 1 was used for all intercepts 

before the logit transformation. Additionally, a standard normal distribution with a mean of 0 and standard deviation of 10 (precision 
0.01) was used for the slope of all variables to standardize the data. The model was run for 200,000 iterations for each MCMC chain at 
three thinning rates. A burn-in period of 50 000 iterations was used to analyze the model with Bayesian inclusion probabilities (wc). 
Similarly, a model without wc was run for 100,000 iterations with a burn-in period of 20 000. After the burn-in period, the tenth sample 
was collected and analyzed for each case. This thinning rate ensured that the posterior samples were sufficiently independent and 
reduced the correlation between samples. After obtaining the posterior samples, the results were analyzed using statistical techniques 
such as posterior means, medians, or credible intervals. Model convergence was evaluated using the Gelman-Rubin convergence 
statistic (R̂) (Gelman et al., 1995) and trace plots (Brooks and Gelman, 1998). 

2.5. Data sampling and model selection 

Because of the nature of CT, it was not possible to accurately identify the species in all images. Furthermore, the ability to obtain 
information about a species varies depending on camera performance and time (Kucera et al., 2011). Therefore, to the extent possible, 
species identified in all images were used in this study. We identified three large- and medium-sized mammals (roe deer, water deer, 
and wild boar) and four small- and medium-sized carnivores (badgers, raccoon dogs, leopard cats, and martens) from the CT images. 
The model was fitted considering station use and detection covariates, and the final model was selected based on the deviance in
formation criteria (DIC) (Spiegelhalter et al., 2002). 

2.6. Software 

The GIS data used in this study were created using ArcGIS Pro 2.9.1 (Esri). All data analyses were performed using the R Studio 
(Team, 2020). MCMC analyses were performed using JAGS (version 4.3.0) (Plummer, 2003) and the R jagsUI package (version 1.5.2) 
(Kellner et al., 2019). 
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3. Results 

We analyzed 52 CT records for seven investigation survey time windows (a total of 13 seven-day periods), and seven dominant 
mammal species were detected: badgers (three cameras; six detections), leopard cats (17 cameras; 32 detections), martens (two 
cameras; two detections), raccoon dogs (15 cameras; 34 detections), roe deer (45 cameras; 228 detections), water deer (18 cameras; 32 
detections), and wild boar (33 cameras; 75 detections). The analysis was performed using the occupancy model, and successful 
convergence was observed for all datasets (R̂ < 1.1). 

3.1. Model performance and grid size effect 

When the models for each species were compared based on DIC, roe deer (309.84), wild boar (312.68), badger (28.50), and raccoon 
dog (148.52) demonstrated a better fit to the occupancy model for the 10 m grid data set. The 30 m grid dataset was better fitted for 
water deer (179.18) and martens (4.13), whereas the 50 m grid dataset was a good fit for leopard cats (185.77). In most models of 
station use probability, forest area (a vegetation factor) and procurement (a terrain factor) were identified from the Bayesian inclusion 
parameters (Wc) (Table 2). 

3.2. Station use parameters 

We compared the station use probabilities of the species for the covariates and analyzed the parameters of the corresponding better- 
fitted model (Table 2). The median weight of parameters of the vegetation type ‘forest’ was observed as highly sensitive for water deer 
(αforest.30 = − 10.71, CI = − 22.30 ∼ − 1.90) and the topography parameter TRI was sensitive for martens (αTRI.30 = 4.24, CI =
1.10 ∼ 8.80) (Table 3). With increasing vegetation and topography parameter values along the road, species occurrence decreased, 
except for roe deer in the forest, water deer on grass, badgers on Tancurve, and martens, based on TRI. 

3.3. Detection parameters 

Similarly, the covariates for the models of detection probabilities were compared for each detection window and significant model 
parameters (Table 2), and their detection probabilities were evaluated (Table 4). The highest influence but opposite relation was 
identified for badgers with camera type (βcam2.10 = − 8.76,CI = − 24.0 ∼ 9.30) and shrub environments (βshrub.10 = − 8.05,CI = −

18.40 ∼ 5.50). Guardrails were also identified as positive detection parameters for badgers (βguardrail.10 = 6.85,CI = − 6.80 ∼ 17.0). 
Camera types were observed as influencing parameters for detection probability but had mixed effects for each species and camera 
type. 

3.4. Comparison of naïve occupancy with station use and detection probabilities 

We calculated the influence of environmental variables on the probability of detecting wild animals based on road-related man
agement factors, wild animal station use probabilities, and wind farm-related environmental factors. Each dataset’s station use and 
detection probabilities were estimated using the better-suited model (Table 2). The results were compared with naïve occupancy 

Table 2 
Summary of models for each species by grid size. The model with the lowest DIC was chosen as the best and highlighted in bold font. A covariate with 
a Bayes inclusion probability (wc) greater than 0.5 was chosen in the model, with a dot (.) indicates the absence of significant covariates.  

Species Model 

10 m 30 m 50 m 

parameter DIC parameter DIC parameter DIC 

Roe deer Ψ(forest) 
p(camtype) 

309.84 Ψ(.) 
p(camtype) 

310.18 Ψ(plancurve+tancurve) 
p(camtype) 

311.71 

Water deer Ψ(forest+plancurve+procurve) 
p(shrub+camtype) 

197.90 Ψ(forestþgrassþprocurve) 
p(shrubþcamtype) 

179.18 Ψ(forest+grass+plancurve 
+procurve+tancurve) 
p(camtype) 

206.85 

Wild boar Ψ(procurve) 
p(.) 

312.68 Ψ(.) 
p(.) 

314.73 Ψ(procurve) 
p(.) 

315.44 

Badger Ψ(forestþprocurveþtancurve) 
p(shrubþguardrailþcamtype) 

28.50 Ψ(procurve) 
p(shrub+guardrail+camtype) 

28.58 Ψ(grass+procurve) 
p(camtype) 

30.11 

Racoon dog Ψ(forestþprocurve) 
p(camtype) 

148.52 Ψ(.) 
p(camtype) 

155.91 Ψ(.) 
p(camtype) 

155.16 

Leopard cat Ψ(TPI+plancurve+procurve) 
p(camtype) 

234.65 Ψ(forest+procurve) 
p(camtype) 

195.30 Ψ(procurve) 
p(camtype) 

185.77 

Marten Ψ(grass+NDVI+procurve) 
p(shrub+windpower+effort 
+camtype) 

12.07 Ψ(forestþgrassþNDVIþTRI 
þprocurve) 
p(shrubþwindpowerþcamtype) 

4.13 Ψ(grass+NDVI+TRI+procurve) 
p(windpower+camtype) 

6.12 

Note:- camtype: Camera type; TRI: terrain ruggedness index; TPI: topographic position index; NDVI: normalized difference vegetation index. 
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Table 3 
Coefficients (median) of covariates for station use (for better-fitted model M#).  

Parameter Roe deer 
(M10) 

Water deer 
(M30) 

Wild boar 
(M10) 

Badger 
(M10) 

Raccoon dog 
(M10) 

Leopard cat 
(M50) 

Marten 
(M30) 

Vegetation        
Forest 7.67 

(− 3.80 to 
23.60) 

-10.71 
(− 22.30 to 
− 1.90) 

– -6.59 
(− 23.0 to 7.10) 

-6.73 
(− 19.60 to 2.90) 

– -8.29 
(− 23.30 to 
5.80) 

Grass – 5.21 
(− 0.20 ~ 12.40) 

– – – – -10.61 
(− 24.60 to 
0.80) 

NDVI – – – – – – -6.44 
(− 22.30 to 
8.80) 

Topography        
TRI – – – – – – 4.24 

(1.10–8.80) 
Procurve – -0.50 

(− 20.0 to 19.10) 
-6.91 
(− 25.2 to 
11.600) 

-1.23 
(− 20.40 to 
17.60) 

-1.93 
(− 20.10 to 
16.60) 

-1.02 
(− 20.50 to 
− 18.30) 

-0.63 
(− 20.0 to 
18.90) 

Tancurve – – – 1.84 
(− 17.50 to 
21.30) 

– – – 

Note: - Values with 95 % credible intervals are in parentheses. 

Table 4 
Intercept estimates of the logit of covariates on the detection probability (in the best model).  

Parameter Roe deer 
(M10) 

Water deer 
(M30) 

Wild boar 
(M10) 

Badger 
(M10) 

Raccoon dog 
(M10) 

Leopard cat 
(M50) 

Marten 
(M30) 

Shrub – 1.50 
(0.50 to 1.90) 

– − 8.10 
(− 18.40 to 5.50) 

– – − 5.04 
(− 11.50 to 0.70) 

Guardrail – –  6.85 
(− 6.8 to 17.0) 

– – – 

Wind power – – – – – – − 2.67 
(− 21.70 to 18.50) 

Cam1 – 1.62 
(0.60 to 2.80) 

– – – – − 2.26 
(− 22.0 to 18.80) 

Cam2 – – – − 8.76 
(− 24.0 to 9.30) 

− 1.49 
(− 2.70 to − 0.30) 

– – 

Cam3 0.86 
(0.20 to 1.60) 

− 1.34 
(− 3.40 to 0.30) 

– – – – – 

Cam4 – 2.20 
(0.80 to 3.60) 

– − 3.33 
(− 21.0 to 15.70) 

– – – 

Cam5 − 2.02 
(− 3.40 to − 0.80) 

– – − 1.23 
(− 20.0 to 17.70) 

− 4.79 
(− 21.40 to 17.30) 

− 4.81 
(− 21.40 to 16.90) 

− 0.19 
(− 20.0 to 19.50) 

Note:– Values with 95 % credible intervals are in parentheses. 

Table 5 
Summary of results for each species Number of observations events (N), camera station with observations (station), naïve occupancy, estimated 
station use (Ψ), and detection probability (p).  

Data set N Station Naïve occupancy Ψ p 

Roe deer 228 45  0.87  0.87  0.76 
Water deer 32 18  0.35  0.72  0.14 
Wild boar 75 33  0.64  0.72  0.30 
Badger 6 3  0.06  0.21  0.12 
Raccoon dog 34 15  0.29  0.36  0.27 
Leopard cat 32 17  0.33  0.41  0.23 
Marten 2 2  0.04  0.05  0.14 

Note:- Number of observations events (N), camera station with observations (station), naïve occupancy, estimated station use (Ψ), and detection 
probability (p).  
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(detected stations/total stations) (Table 5). 
In all datasets, we observed variations in the station use probability (Ψ) and detection probability (p), which provide insights into 

the factors influencing species presence. Notably, the estimates of Ψ and p revealed species-specific patterns. Among the studied 
species, roe deer exhibited the highest station use probability (Ψ = 0.87) and detection probability (p = 0.76), with a relatively small 
discrepancy compared to naïve occupancy (0.87). In contrast, water deer had a relatively low detection probability (p = 0.14) and a 
station use probability (Ψ = 0.72) significantly different from naïve occupancy. Wild boar demonstrated an intermediate detection 
probability (p = 0.30) and a station use probability (Ψ = 0.72). Conversely, badger displayed the lowest detection probability 
(p = 0.21) and station use probability (Ψ = 0.12). The raccoon dog and leopard cat had their respective detection probabilities (p) of 
0.27 and 0.23, with station use probabilities (Ψ) of 0.36 and 0.41. In contrast, martens, while less frequently detected, had an estimated 
detection probability (p = 0.23) and station use probability (Ψ = 0.05), both differing notably from naïve occupancy (0.04). These 
findings highlight the species-specific variations in detection and station use probabilities, shedding light on the ecological factors that 
influence their presence in the studied areas. 

4. Discussion 

Numerous studies have demonstrated that wind turbines negatively affect wildlife populations. This study is significant because it 
assessed the impact of a wind farm established along the ridge of a mountain within a forest. Furthermore, previous studies have 
focused on flying species directly harmed by wind turbines (Kunz et al., 2007; Baerwald et al., 2008; Pearce-Higgins et al., 2009). We 
assessed the indirect effects of environmental changes on terrestrial mammals resulting from the construction and expansion of 
managed roads built to maintain wind farm operations. 

The negative effects of wind turbines on wildlife are still being reported, and the destructive effects of wind farm construction on 
wildlife habitats are undeniable (Klich et al., 2020; Kumara et al., 2022). Our study examined this impact using CTs installed at 52 
stations on wind-farm management roads. Very few badgers and martens were detected at three and two stations, respectively. 
Herbivores (roe deer, water deer) had a higher station use probability on the wind turbine management road than carnivores (leopard 
cats). Some studies have shown that wind farms do not adversely affect Artiodactyla, including roe deer (Flydal et al., 2004; Walter 
et al., 2006). According to our occupancy model findings, wild mammals are near the study area’s wind farm management roads. 
Higher road use affects wildlife behavior and can increase roadkill probabilities; therefore, continuous research and conservation 
priorities must be directed toward minimizing the risks to wildlife (Grilo et al., 2021; Medrano-Vizcaíno et al., 2023). 

The detection probabilities were low for all species except roe deer, with the lowest detection probability for water deer. Classifying 
CT images can vary greatly depending on the image quality. Identifying species with distinct phenotypes is relatively easy because they 
can typically be performed with the naked eye. In the case of wild boars or roe deer, identification can be performed based on images 
captured at night, from a distance, or when the face is not visible. Furthermore, the CT data-acquisition process results in false 
negatives (a feature of image collection when an object passes in front of the camera). This problem is exacerbated in small rare species 
(Burton et al., 2015; Findlay et al., 2020). We used the occupancy model to resolve this issue, as this model minimizes false negatives 
for species with low detection rates using the detection probability. Consequently, for all species, the estimated probability of station 
use was slightly higher than the probability of naïve occupancy. This occupancy model has significant advantages over other ap
proaches for species that are rare or difficult to identify using images (Rich et al., 2016; Cordier et al., 2022). 

We used five different types of cameras for detection covariates and observed the significance of all the studied species except for 
wild boar. However, among camera types, there are variations in sensitivity, performance, and viewing distance; therefore, it is critical 
to minimize these differences in equipment performance when conducting CT research (Burton et al., 2015). Understanding how 
wildlife reacts to the altered land cover and degraded forest topography resulting from wind farm construction is critical. When a wind 
farm is built within a forest, complex management roads are constructed, intensifying changes in the topography and land cover 
(Diffendorfer and Compton, 2014). Procurve emerged as a notable factor in our analyses for all species except for roe deer station use. 
Similarly, forest land cover features were crucial in most species, except wild boars, leopard cats, and martens. These alterations in 
land cover and forest landscapes are particularly meaningful for species that move between habitats and for those with limited 
migratory tendencies, ultimately leading to the loss of suitable habitats. 

When the spatial scale of land cover features was examined at a grid scale, the 10 m grid size was optimal for all species except for 
water deer and leopard cats. A grid size of 10 m is thought to be better than 30 m and 50 m grids for understanding the topographical 
changes caused by road management, as we believe that the variation in topographical properties around this road is significant for 
wildlife. However, because the leopard cat is relatively small compared to large mammals, there are no restrictions on its activity, and 
its activity levels are high; therefore, a large grid of 50 m was identified as the best model (Mohamed et al., 2013). We only analyzed 
grids of 10, 30, and 50 m; varying grid sizes and impact analyses are warranted for future research. 

Water deer have a high probability of station use in areas with low forest cover. Water deer prefer early successional vegetation, 
which may be explained by the preference for understory vegetation around managed roads after construction over old forests (where 
there is little understory vegetation). The plane curve was a significant parameter in the leopard cat model with a 10 m grid size. The 
plane curve represents the topological curvature along the contour line. A positive value represents a convex topography, whereas a 
negative value represents a concave topography (Minár et al., 2020). Leopard cats exhibited a low station use probability in concave 
terrains (Table S00), which can be attributed to movement patterns in search of areas with gentle slopes while avoiding spaces that are 
difficult to traverse owing to changes in topography caused by wind farm construction. 

Shrub cover was a significant determinant of the probability of detecting deer. Water deer prefer scrublands to man-made features 
on roads. Wild animals are assumed to choose locations with few obstacles and easy movement; therefore, they enter roads and move 
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along them. However, relating these findings to species ecology or environmental variation is difficult. Furthermore, because all 
camera settings were identical and the installation locations were chosen randomly, there was a difference in the camera performance 
that could not be controlled. 

This study illustrates the application of the occupancy model for examining station use and detection probabilities in a wind farm 
management road using the example of a Yeongyang-gun wind farm in South Korea with varying grid size effects. However, data on 
biodiversity before wind farm construction were lacking in our study; thus, before-and-after comparisons were impossible. Further
more, it should be noted that our data explain the probability of using wind farm management roads, which differs from the probability 
of using the entire wind farm. To comply with the closed assumption of the occupancy model, the monitoring period of three months 
between October and December was short (MacKenzie and Royle, 2005). This study captured only short-term data owing to resource 
availability and gained insights into its impact on wildlife. In addition to addressing the limitations of this study, the impact of forest 
management roads on habitat fragmentation and connectivity could be a topic for future research. 

5. Conclusion 

Wind turbines continue to proliferate worldwide, along with the destruction of wild animal and plant habitats. Understanding the 
responses of terrestrial mammals to the current wind-farm management systems is critical. Management roads impede wildlife 
movement, and wind turbines cannot always be avoided. This short survey found that terrestrial mammals use wind-farm management 
roads in the forest. It was deduced that some species prefer these forested routes and that changes in topography have an impact on 
wild animals. Ecological tunnels that provide safe passages for animals to cross roads should be designed to minimize road detection 
and diversity loss. We also recommend the development of an appropriate wind farm management plan by analyzing the return rate of 
wild animals through continuous monitoring. 
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