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Abstract: Three recent publications have estimated the number of birds killed each year by wind
energy facilities at 2012 build-out levels in the United States. The 3 publications differ in scope,
methodology, and resulting estimates. We compare and contrast characteristics of the approaches
used in the publications. In addition, we describe decisions made in obtaining the estimates
that were produced. Despite variation in the 3 approaches, resulting estimates were reasonably
similar; about a quarter- to a half-million birds are killed per year by colliding with wind turbines.
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THE CURRENT PACE OF WIND energy devel-
opmentand its projected growth have prompted
questions about the environmental effects of this
renewable energy source. Primary concerns are
the consequences to birds and bats, although
other taxa may also be influenced. In this paper,
we focus only on issues related to birds at
onshore wind energy facilities, because offshore
wind energy development has not yet occurred
in North America. Two primary issues of wind
energy development are fatalities of birds that
collide with wind turbines and avoidance of
wind turbines by birds, potentially reducing
quality of surrounding habitat for the birds.
We do not discuss the avoidance issue here,
because of the paucity of information available
from well-designed studies.

Most previous research examining effects of
wind energy development on birds focused on
individual wind facilities; this limited scope
precluded cumulative fatality estimates and
large-scale inferences. Fortunately, 3 recent
publications based on systematic compilation
and analysis of a large number of data sets
(Smallwood 2013, Loss et al. 2013, and Erickson
et al. 2014) presented estimates of numbers
of birds killed annually by wind turbines in
North America. The 3 publications (hereafter,
reviews) differ in scope, methodology, and

resulting estimates. The objective of our paper is
to clarify distinctions among the 3 approaches.
In addition, we describe decisions made in
obtaining the estimates that were produced.
Our hope is to provide a clearer understanding
of differences among the reviews and to
stimulate thinking about improvements that
might be feasible for future estimates of wildlife
fatalities from wind turbines. In this paper, we
sometimes include information about the 3
reviews that was not in the original publications
but was added following discussions with co-
authors.

Distinctions among the 3 approaches can be
viewed as falling into one of 5 categories: (1)
scope of study—types of species and turbine
models included and geographic range for
which projections were made; (2) criteria for
inclusion—decisions made by the authors
about which studies were to be included in
their analyses; (3) adjustments for biases—
what was done to reduce biases in estimates
of fatalities caused by imperfect availability
and perceptibility (discussed in detail below);
(4) statistical procedures—how results from
the reviewed studies were combined to derive
estimates; and (5) estimates of total fatalities—
how results of the authors’ reviews were used
to draw inferences about the collision issue.
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Figure 1. Examples of lattice turbines, right, and monopole turbines, left. (Photo by Shawn Smallwood)

Scope of study

Knowledge of the speciesincluded in a fatality
estimate is important in that species vary in
population size and trajectory, geographic range
at various times of the year, and vulnerability
to anthropogenic fatalities. Knowledge of the
geographic region of coverage is also important
for policy planning activities and assessing
range-wide impacts to bird populations. Loss
et al. (2013) and Smallwood (2013) estimated
the number of fatalities for all avian species.
Erickson et al. (2014) restricted attention to
small passerine species, although an analogous
estimate for raptors is planned.

Smallwood (2013) and Loss et al. (2013)
estimated the number of fatalities for the
conterminous United States. Erickson et al.
(2014) also included Canada. Erickson et al.
(2014) recognized the absence of data from the
southwestern United States, which has 7% of the
continent-wide operating capacity. Accordingly,
they multiplied estimated numbers of fatalities
by 1.07. (Note that it would have been more
accurate to use 1.00 + 0.07/(1.00 - 0.07) = 1.075,
because the non-southwestern capacity is 93%
of the total.)

Loss et al. (2013) and Erickson et al. (2014)

considered only wind turbines of the monopole
design, arguing that earlier wind turbines with
lattice structures are being phased out. They
believed that lattice designs provide perch sites
for raptors and other birds, whereas monopole
designs do not. Also, lattice designs (Figure
1) were used with early wind turbines, many
of which had lower generating capacity than
newer models, thus skewing metrics such
as wildlife fatalities per megawatt capacity.
Smallwood (2013) included all design types,
including lattice, monopole, and vertical,
although the number of turbines with vertical
designs is very small (Figure 2). It should be
recognized that lattice-structure wind turbines
remaining in place, even if nonfunctional, can
provide perch sites for raptors and other birds
and, thus, increase risk of collision with nearby
wind turbines, regardless of their design.
Ideally, all types of designs should be included
in an analysis, but in proportion to the number
of each design in the entire universe of wind
generators. Loss et al. (2013) and Erickson et
al. (2014) underrepresented lattice designs
in their analyses, and Smallwood (2013)
likely overrepresented them in one of his 2
comparative analyses because of the extensive
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investigations conducted at turbines with
lattice designs at Altamont Pass.

Criteria for inclusion

All reviews included information from
the conterminous United States and Canada
(although relatively few sites in Canada were
used), because all authors assumed that sites
in Canada have similar relationships between
fatality rates and variables used to estimate
those rates. Erickson et al. (2014) noted that data
were lacking from the southwestern United
States. This could create a serious deficiency in
the national fatality estimates if relationships
between fatality rates and wind turbine metrics
in the Southwest differ from those elsewhere.

Each of the 3 reviews incorporated as many
reports as feasible, with modest differences in
selection criteria (Table 1). Loss et al. (2013), for
example, included reports only if results had
been adjusted for bird-carcass availability and
perceptibility. The other authors used reports
with original data and applied adjustments to
those data as part of their analyses.

The number of studies and number of wind
energy facilities used to develop national
fatality estimates varied. Loss et al. (2013)
included 53 studies involving 53 wind energy
facilities. Smallwood included 72 studies
covering 71 wind energy facilities, 19 of which
were at Altamont Pass, California. Erickson et
al. (2014) summarized 116 studies at >70 wind
energy facilities.

Loss et al. (2013) excluded studies with <3
turbines investigated. Because Loss et al. (2013)
based their analysis on estimated number of
fatalities for entire wind farms, this step was
important to ensure that aberrant results from a
small sample of turbines were not extrapolated
to a larger scale. Smallwood (2013) and
Erickson et al. (2014) based their analyses on
an estimated number of fatalities per megawatt
capacity and, thus, did not need to be restrictive
regarding number of turbines investigated.

Loss et al. (2013) included studies that
reported no fatalities, and Erickson et al. (2014)
included 1 facility with no small-bird fatalities
but other avian fatalities. Smallwood (2013) did
not encounter any such studies.

Adjustments for biases
All wildlife fatality estimates reviewed

Figure 2. Example of vertical-axis design turbine,
the only type of its kind put into industrial-scale
operation. A few others appeared singly or as
demonstration projects. The ones pictured were 150
kW. This type also occurred as a 250 kW version.
Both types were in the Altamont Pass until 2000,
and both were removed in 2002. (Photo by Shawn
Smallwood)

were based on systematic searches for wildlife
carcasses near wind turbines. Carcasses found
usually are presumed to represent fatalities
caused by collisions with the nearest wind
turbine. The number of carcasses found is
a biased estimator of the actual number of
fatalities for 4 reasons, as follow.

1. Spatial incompleteness. Most (about
86% by capacity) wind farms are not
investigated, according to Erickson et
al. (2014) at the time of their study. At
many of the investigated wind farms,
carcass searches were conducted at only
a fraction (about 24%) of the turbines,
according to Erickson et al. 2014. However,
implementation of the 2012 Wind Energy
Guidelines (U.S. Fish and Wildlife Service
2012) does appear to have increased
availability of studies recently. Further,
at some turbines, carcass searches do not
cover the entire area over which a carcass
could come to rest.

2. Temporal incompleteness. Many
fatality searches are conducted for only
part of the year.

3. Incomplete availability. Due to
removal by scavengers or humans, some
carcasses do not persist long enough to be
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detected during fatality searches.

4. Imperfect perceptibility. Some
wildlife carcasses that are available to be
detected by searchers are missed. Clearly,
an interaction between availability and
perceptibility exists in that remains of
a partially scavenged carcass can be so
minimal as to virtually eliminate the
possibility of detection.

Regarding spatial incompleteness, the fact
that only some wind turbines at some wind
farms were included in studies is a sampling
issue. In Smallwood’s (2013) sample, 27% of
the studies were at Altamont Pass, California,
a well-known hot spot for wildlife collisions
with turbines. Accordingly, Smallwood (2013)
presented 2 sets of fatality estimates, one
including Altamont Pass and one omitting
Altamont Pass.

The other aspect of spatial incompleteness
is the possibility that carcasses fell outside
the searched area. Search areas varied widely
among studies, including circles of radius
ranging from 20 to 90 m around a turbine and
rectangles ranging from 110 m x 110 m to 252
m x 252 m (Erickson et al. 2014). Smallwood
adjusted estimates based on proportion
of all fatalities found for classes of turbine
tower height paired with plot size derived in
Smallwood (2013) from raw data contained in
previous studies. Loss et al. (2013) also used
Smallwood’s (2013) method. Erickson et al.
(2014) acknowledged the issue but made no
adjustment for this spatial incompleteness.
They noted that larger search areas were more
likely to include birds killed from other causes
(i.e., background fatality) in addition to birds
killed by colliding with a wind turbine. Notably,
crippling bias is a potentially major type of
spatial incompleteness bias that has not yet
been addressed in any study of anthropogenic
bird fatality. This bias arises from birds that
are severely injured but live long enough to
move outside of the surveyed area and that
consequently may be missed by searchers.

Temporal incompleteness arises from
searches not being conducted throughout an
entire year. Most studies covered 12 months
(or longer), but some were 6 to 9 months long
(Erickson et al. 2014). Spring and fall migration
periods are the most critical for most wind farms,
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although fatalities can be common at other
times of the year at some facilities (e.g., Osborn
et al. 2000). Smallwood (2013) and Erickson et
al. (2014) proceeded on the assumptions that
search periods covered the times when birds
would be present in substantial numbers and
that virtually all fatalities would occur during
these times. These requirements are similar to
many state guidelines, which do not require
winter surveys. Accordingly, resulting fatality
estimates would be biased low to the extent that
birds colliding with turbines (bird strikes) occur
outside of the surveyed period. In contrast, Loss
et al. (2013) included the logarithm of search
duration as an offset variable in their regression
model. The net effect of this modeling step is to
assume that fatality rates during the unsearched
portion of the year are the same values as
during the searched portion. Accordingly, their
estimates likely are biased high, but by only
about 13% overall, based on the total duration
of studies (1,371 months) versus total duration
of studies had they all been 12 months or longer
(1,550 months; Table 2).

Incomplete availability of data arises when a
bird carcass becomes undetectable between the
time of its death and the search for fatalities.
For example, a carcass could be consumed
or carried off by a predator or scavenger, or
it might decay. The rate at which a carcass
becomes undetectable clearly depends on
the predator and scavenger community,
temperature, humidity, and other local
variables. The best way to heighten carcass
availability is to conduct searches frequently
and early in the day. Doing so also increases the
chance to document the full array of bird species
killed, including any rare species that might be
killed only occasionally but could experience
disproportionate population-level impacts of
collisions (Beston et al. 2015). Summarizing
studies in Erickson et al. (2014), we find the
most frequent intervals between searches are
14 days and 7 days (Table 3). More studies had
30 days between searches than daily searches.
Only rarely would a small carcass be expected
to persist for as long as 30 days.

To adjust for incomplete availability, many
studies include carcass removal trials in which
carcasses are placed in locations similar to
the search area, and observers visit them
periodically to determine how long they remain
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When possible, searcher efficiency values
estimated with multiple opportunities to

Average values by bird
size (small, medium,

From original reports

Searcher efficiency (detection)

rate
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detectable (e.g., Smallwood 2007).

This leads to the final bias of observed
counts—imperfect  detectability. =~ Some
carcasses that are available to be detected
by searchers are not detected. Clearly
an interaction between availability and
perceptibility exists in that remains of a
scavenged or decayed carcass can be present,
but so minimal as to virtually eliminate the
possibility of detection. Perceptibility is likely
affected by numerous other variables, such
as skill and attentiveness of searchers, width
of search transects, weather conditions,
size and color of carcass, substrate, and
vegetation (Smallwood 2007).

Attempts to account for imperfect
perceptibility involve searcher detection
trials, in which carcasses are placed in the
search area and the proportion of those
that are detected by searchers is computed.
Complications to such trials include limited
ability for researchers to use carcasses of
similar size, coloration, and state of decay
as actual fatalities. Species typically used in
carcass removal trials and searcher detection
trials, such as mallard (Anas platyrhynchos),
quail (Coturnix spp.), ring-necked pheasant
(Phasianus colchicus), rock pigeon (Columba
livia), and house sparrow (Passer domesticus),
may not be representative of fatalities
because of differences in size or coloration
(Smallwood 2007, Erickson et al. 2014).
All 3 reviews used adjustments to biases
in availability and perceptibility when
generating national bird mortality estimates.

port. All searcher
me were com-

ted to determine searcher

ata in the re
ght (2013) land
on estimates

o

values in each bio

y atte
from

y
y
bined to obtain regional searcher efficiency

detect a carcass were adjusted to reflect single-
rates.

search values to compare to other studies that

provided values from a single search. When
projects that did not report searcher efficiency

multiple years of study were conducted, all
data were combined into a single searcher
efficiency value estimate for that project. For

214,000-368,000 (all birds)

134,000-230,000 (small
Partners in Fli

passerines)
bird populati

rates, the
efficienc
efficienc
database.

ty pro-

1

not), and visibi

Results

573,093
Comparison not made.

large), type (raptor or
vided by substrate.

Statistical procedures

140,000-328,000
Comparison not made.

Procedures used to address these sampling
issues are described above. Loss et al. (2013)
and Erickson et al. (2014) used different
stratifications to develop their estimators
of the total number of bird fatalities (Table
1), whereas Smallwood (2013) did not use a
stratification approach other than including
or excluding Altamont Pass estimates.

The reviews varied in their approach to
estimating the total number of bird fatalities.
We present only summaries here; the
original publications should be consulted for
details. All used ratio estimation, involving
the ratio of fatalities per energy unit (i.e.,
operating capacity or number of turbines)

Estimates of population size for

Fatality estimate, per year
comparison.
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Table 2. Number of studies with specified dura-
tion (from Erickson et al. 2014).
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Table 3. Number of studies with specified search
intervals (from Erickson et al. 2014).

Duration (months) Number of studies

6 10
6.5 2
7 6
7.5 2
8 1
9 21
10 1
12 63
14 1
24 6
36 2

where the total of energy units for the entire
geographic area was known. Smallwood (2013)
and Erickson et al. (2014) used the nameplate
generating megawatt (MW) capacity, the stated
capacity of a wind turbine, as the energy unit.
These values were publicly available for all
wind farms. Loss et al. (2013) used the number
of turbines, adjusted for turbine height, as the
energy unit. Because turbine height generally
correlated closely with generating capacity,
the 2 approaches were not as dissimilar as
might appear. An energy unit that would seem
preferable to megawatt, turbines, or turbines
adjusted by height is the actual output of a
wind turbine (e.g., in megawatt hours; this
unit should help account for differences in the
potential for wind turbines to cause fatalities,
reflecting the amount of time that a generator’s
turbine blades were spinning. However, data
on operating output were generally considered
proprietary and not publicly available at the
scale of individual wind facilities. Further,
Smallwood et al. (2010) used that metric
and found no improvement in predicting
mortality rates over the generating capacity.
A more precise energy unit might involve
a combination of turbine rotor-swept area,
hours of operation, and, especially, hours of
operation during high bird activity in the area.
Obtaining this information, however, would
require further development of approaches to
quantify bird abundance near turbines with a
high degree of spatial and temporal resolution.
Also, some fatalities occur with non-moving
turbines, and Longcore et al.’s (2012) estimates
for bird collision mortality at communication
towers with strobe lights and without guy wires

Interval between Number of studies

searches (days)

1 23
2 1
3 6
3.5 3
4 2
7 50
14 55
21 2
30 36
90 1

were similar to estimates for wind turbines of
similar height. Because Loss et al. (2013) used
the estimated total number of fatalities for an
entire wind farm, they included as an offset
term in their model the logarithm of number of
turbines in the wind energy facility.

Several mathematical methods have been
proposed for using results from carcass removal
and searcher efficiency trials to adjust counts
of fatalities for incomplete availability and
imperfect perceptibility. The most commonly
used methods are: Shoenfeld’s (2004), used in 74
studies reviewed in Erickson et al. (2014); Jain’s
(2005), 22 studies; Huso’s (2010), 9 studies; and
an older, so-called naive method, 10 studies.
Each method relies on a set of assumptions
about relations between detectability, search
intervals, and results from the bias trials. See
Smallwood et al. (2013) or Korner-Nievergeldt
et al. (2011) for more-detailed discussions and
comparisons of the methods.

In their review, Loss et al. (2013) used adjusted
estimates from each included study, regardless
of the method adopted in the study. Smallwood
(2013) adjusted observed counts of fatalities by
a number he developed that varied by body
size and type of bird (i.e., raptor, nonraptor).
Smallwood’s (2013) approach assumed that
a carcass missed on the first search after the
fatality occurred would also be missed on all
subsequent searches, so the estimator is biased
somewhat high when search intervals are short.
Erickson et al. (2014) created a customized
adjustment factor for each reviewed study
based on: (1) the estimator method originally
used; (2) search interval (e.g., weekly, bi-
weekly, etc.); and (3) classification of carcass
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removal trials and searcher detection trials.
They classified the overall average value for
carcass removal as fast (0 to 10 days), moderate
(11 to 23 days), or slow (224 days). Searcher
efficiency rates (proportion found) within each
study were averaged and categorized as low (0
to 0.375), medium (0.375 to 0.65), or high (0.65
to 1.00). For each combination of these 4 factors,
they determined the lowest and highest bias
adjustment values, based on trial simulations.

Estimates of total fatalities

Lossetal. (2013) estimated the annual number
of birds (all species) killed at wind energy
facilities in the conterminous United States to
be between 140,000 and 328,000. Smallwood’s
(2013) estimate for the conterminous United
States was 573,093 total fatalities for all species.
Erickson et al. (2014) estimated annual number
of fatalities for all species for the conterminous
United States and Canada to be between
214,000 and 368,000 birds. For small passerines,
the range was between 134,000 and 230,000.
Erickson et al. (2014) took a further step by
comparing their estimates to estimated sizes of
bird populations, based on Partners in Flight
(2013) estimates.

Discussion

Several differences among the approaches
taken in the 3 studies can be identified (Table
1). Loss et al. (2013) and Smallwood (2013)
included all species of birds, whereas Erickson
et al. (2014) focused on small passerines, which
would result in a reduced estimate of total
fatalities. Smallwood’s (2013) review included
an over-representation of data from Altamont
Pass in 1 set of estimates, which likely would
increase his estimate compared with the
others. The number of studies included in each
analysis varied from 53 to 116. Smallwood
(2013) and Loss et al. (2013) used an adjustment
for size of the search plot that Smallwood (2013)
developed; Erickson et al. (2014) recognized
the potential problem of search plot size but
commented that larger plots likely would
contain more fatalities from other causes, such
as predation. Some studies in the Altamont
have suggested that burrowing owl (Athene
cunicularia) mortality may in part be due to
predation.

Smallwood (2013) and Erickson et al. (2014)
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made no adjustment for studies not conducted
forafull year. Their estimates accordingly would
not include any fatalities that occurred during
non-search periods, most of which presumably
were when birds were largely absent from
the area of the wind energy facility. Loss et al.
(2013) made such an adjustment, which, if birds
actually were not at risk during non-search
periods, would inflate their estimate, but by
only about 13%. Loss et al. (2013) used fatality
estimates based on adjustments for imperfect
availability and perceptibility used by original
authors. The other analyses used consistent
sets of adjustment values (Table 1). Accuracy
of the various adjustment methods differ in
relation to a number of variables, and cannot be
ascertained readily.

All reviews used ratio estimation to obtain
estimates of total numbers of fatalities. Ratios
used by Smallwood (2013) and Erickson et
al. (2014) were estimated number of fatalities
per megawatt capacity. Loss et al. (2013)
instead used the number of fatalities per
turbine, adjusted for height, which correlates
strongly with capacity. Capacity may not be
an ideal denominator because, for example, a
3.0 megawatt turbine with 90-m-long blades
has only 37% more rotor-swept area than a
1.5 megawatt turbine with 77-m-long blades.
Even the rotor-swept area has issues as a
denominator, because a smaller fraction of that
area is occupied by a blade at any moment
in time for a larger rotor than for a smaller
one (Tucker 19964, b). Other denominators
to consider might be (1) actual output from a
turbine or (2) the turbine’s rotor-swept area
combined with hours of operation, weighted
by bird activity at the time. Unfortunately,
these data are generally not available. Further
investigation into this issue is warranted.

Variation in which studies were included
in each review raises a major question about
data availability. Each author took great pains
to find as many studies as possible, subject
to selection criteria mentioned. That the
reviews differed in studies found indicates a
major lack of transparency in accessibility of
reports on fatality studies conducted at wind
energy facilities. The overriding question
is how representative the data sets were.
Random, systematic, or stratified sampling of
wind farms, turbines, and years, along with



16

large sample sizes, would ensure with high
probability a representative sample. However,
none of these methods was used. Each sample is
a hodge-podge of sampling units. A statistician
would approach such a sample either with
considerable caution and a host of caveats, or
with a blindfold of optimism.

Evidence that the sample is not representative
is ample. The issue of whether fatality rates
at monopole and lattice design towers differ
and should be included or not is an example.
Some lattice towers remain, and others may
be built, so they should be included in the
sample in appropriate proportions. Clearly the
geographical representation of sampled wind
farms differs dramatically from the universe
of wind farms that exist. For example, in the
Loss et al. (2013) stratification, 53% of the
capacity was in the Great Plains, versus 15%
of the surveyed turbines. Erickson et al. (2014)
noted the absence of surveyed wind farms in
the Southwest, despite the region hosting 7% of
wind capacity. Texas is the leading state in terms
of wind energy production, but wind farms
there are poorly represented in the available
data. However, due to the recent U.S. Fish
and Wildlife Service wind energy guidelines
(USFWS 2012), it appears that a much larger
percentage of projects are collecting avian
fatality data. Since these review papers were
written, >50 additional studies are now
available for inclusion in future meta-analyses,
including several studies in areas where data
were lacking at the time.

Because fatality studies generally are
conducted by or financially supported by the
wind industry, a skepticmight questionif results
of studies demonstrating high rates of fatalities
are made as easily available as results from
innocuous wind farms. Legal requirements for
wind energy developers to ensure accessibility
of study results would resolve many problems
associated with analyses, such as those
reviewed here.

A study analogous to the 3 studies we
reviewed was conducted for Canada by
Zimmerling et al. (2013), who estimated the
total number of fatalities in 2011 to be 23,300
birds. That number was based on an estimate of
8.2 fatalities per turbine annually and included
adjustments for the biases we discussed above
and direct extrapolation of that value across all
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wind turbines in Canada.

Despite the differences among the 3 reviews,
all of them estimated annual number of bird
fatalities from wind developments within
the same magnitude, roughly a quarter- to a
half-million birds per year at 2012 build-out
levels. Of course there are more turbines now
and many more are planned. Along with the
associated power lines and towers, number of
fatalities will increase. Prompted by the U.S.
Fish and Wildlife Service (2012) guidelines,
more studies are being conducted, resulting in
additional information to understand impacts,
risk, and siting concerns.
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