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Abstract

Public lands across the United States are managed for multiple uses, resources,

and values ranging from energy development to rare plant conservation. Inten-

sified energy development and other land use changes across the Southwestern

United States have increased the need for proactive management to mitigate

impacts to rare plants. Habitat suitability models can inform decision-making

and lead to more effective conservation of rare plants and their habitats, but

high-quality models that are suited for use at local scales are lacking for many

species. Our team of scientists and managers developed ensembles of habitat

suitability models for five rare plant species in New Mexico using a copro-

duced, iterative framework complemented by comprehensive ground truthing

and tailoring of products for use in public land decisions. Our process resulted

in substantial differences from initial models through changes to environmen-

tal predictors, species occurrence and background data, and development of

new species-specific predictors. Involving species experts and end users in

model development can strengthen the process and resulting model and build

understanding and trust in final products. Both factors can promote use of

models to inform public land permitting and planning decisions that may

affect rare plants, including by guiding development away from highly suitable

habitats.
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1 | INTRODUCTION

Public lands worldwide provide crucial habitat for many
rare and threatened or endangered species, including rare
plants. In the United States, over half of the estimated
suitable habitat for 818 imperiled plant and animal spe-
cies occurs on federal lands managed to protect biodiver-
sity, with another 316 species occurring on lands
managed for multiple uses (Hamilton et al., 2022).

Some public lands are highly protected (e.g., Gap
Analysis Project status 1, U.S. Geological Survey [USGS]
Gap Analysis Project [GAP], 2022). While these lands
may accommodate different uses, such as conservation
and recreation, they are protected from conversion of
natural land cover and managed to retain a natural state.
National Parks in the United States are an example of
this type of public lands, as the goal for these lands is to
preserve unimpaired natural and cultural resources and
values for current and future generations (National Park
Service Organic Act of 1916).

Other public lands are explicitly managed for multi-
ple and diverse resources, values, and uses that often
include extractive, ground disturbing activities, such as
traditional and renewable energy development, vegeta-
tion treatments to manage fuels and increase forage for
livestock grazing, and timber harvest. This is the case for
many public lands in the United States, including those
managed by the Bureau of Land Management (BLM;
Federal Land Policy and Management Act of 1976
[43 USC §1701]), the U.S. Forest Service (Multiple-Use
Sustained-Yield Act of 1960 [16 USC §528]), and the
U.S. Department of Defense (U.S. Department of Defense
(USDOD), 2016). Multiple-use public lands in the
United States are under increasing pressure to support
domestic energy production (e.g., Allred et al., 2015), live-
stock use (Veblen et al., 2014), and fire management
(e.g., Chambers et al., 2017).

Lands managed by the BLM in New Mexico epito-
mize this pressure. More than 1000 analyses for proposed
energy development actions were conducted by the BLM
in New Mexico between 2015 and 2019—far more than
in any other state (Figure S1). Hundreds of thousands of
acres of vegetation treatments have been approved or
proposed in New Mexico since 2015, with potential to
affect numerous imperiled plant species (Bureau of Land
Management, 2023b). New Mexico is home to multiple
rare and endemic plant species (New Mexico Energy

Minerals and Natural Resources Department Forestry
Division, 2017), and the BLM manages important habitat
for many of these species (Bureau of Land
Management, 2019).

Public land management agencies are required to pro-
tect listed species (Endangered Species Act (§7(a)(1) and
§7(a)(2))) and manage lands to maintain and restore hab-
itat for sensitive species to prevent listing (Bureau of
Land Management, 2008). The National Environmental
Policy Act (NEPA, 42 U.S.C. §4321) requires that an
assessment of environmental effects be conducted when-
ever an action proposed on public lands may have signifi-
cant environmental impacts. These assessments must
identify the resources that may be present, how and to
what extent they may be impacted by the proposed
actions, and measures that can be used to mitigate any
adverse impacts. NEPA requires use of the natural and
social sciences in those assessments (42 U.S.C. §4322
(2)(A)).

When public lands are expressly managed to accom-
modate different kinds of development and other ground
disturbing activities, it is critical for resource managers to
have awareness of the general distribution of suitable
habitat for rare plants in the region, regardless of jurisdic-
tion. Knowing where suitable habitat for rare plants
occurs both on and around multiple-use public lands can
inform permitting decisions and required mitigation
measures for oil and gas facilities, for example, to mini-
mize negative impacts to rare plant populations. Models
of suitable habitat for rare plants across their range can
help to achieve these goals.

Habitat suitability models can leverage compiled
datasets of rare plant occurrences housed in museums,
herbaria, and rare species databases (e.g., Natural Heri-
tage programs in the U.S.), together with increasingly
available environmental characteristics such as those
derived from remotely sensed data (He et al., 2015;
Randin et al., 2020), to describe and predict species-
habitat relationships across a geographic area of interest.
While habitat suitability models have been developed for
many species worldwide (e.g., Warren et al., 2018), many
species of management concern lack habitat suitability
models that are appropriate for informing decisions and
actions on public lands (Sofaer et al., 2019).

The best available science and data are required to
inform management actions and decisions on public
lands (e.g., the Endangered Species Act, 16 U.S.C. §1533
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(b)(1)(A)), and those methods must be documented
(Administrative Procedures Act (5 U.S.C. §551–559)).
Public land decisions are challenged on the quality of the
science that they use (Foster et al., 2023), including chal-
lenges related specifically to agency use of habitat suit-
ability models (Bureau of Land Management, 2017). It is
therefore critical that habitat suitability models intended
to inform public land decision-making are transparent,
defensible, and publicly available (Reese et al., 2019;
Sofaer et al., 2019).

In addition to these basic requirements, habitat suit-
ability models intended to inform planning and permit-
ting decisions on public lands must have a spatial
resolution and accuracy that allows for their use at local
scales (e.g., to inform decisions about the best placement
of individual oil and gas wells to minimize loss of both
occupied and suitable habitat for the species). Public land
managers may be hesitant or unwilling to use models if
they do not understand how they were developed, and as
a result do not trust their quality (Addison et al., 2013;
Sofaer et al., 2019; White et al., 2019).

Our goal was to create trusted maps of suitable habi-
tat for rare plants to inform management decisions and
actions at local scales on and around multiple-use public
lands. We focused on five rare plant species in New
Mexico: Sclerocactus cloverae K.D. Heil & J.M. Porter, Ali-
ciella formosa (Greene ex Brand) J.M. Porter, Townsendia
gypsophila Lowrey & P.J. Knight, Cymopterus spellenber-
gii R.L. Hartm. & J.E. Larson, and Astragalus ripleyi Bar-
neby. To achieve this goal, we focused on three key
outcomes—high-quality products suitable for use at local
scales, defensibility and transparency in the modeling
process and products, and end user understanding and
trust in the modeling process and products. We sought to
achieve these outcomes through five strategies: (1) adopt-
ing a coproduction approach to model development that
involved creating and maintaining a close scientist-
practitioner partnership throughout project development,
modeling, map production, and management application,
(2) clearly documenting modeling inputs and methods to
promote confidence, repeatability, and updates, (3) using
an iterative framework for model development that con-
tinues the modeling process until there is clear under-
standing and trust by end users and documents decisions
and changes made to models throughout the modeling
process, (4) ground truthing of model outputs and key
predictors by management agency staff, and (5) sharing
results through published, publicly accessible data prod-
ucts tailored for the anticipated management uses. We
believe that combining these five strategies—coproduc-
tion, documentation, ground truthing, iteration and
assessment, and publication—can foster greater use of
habitat models for rare plants in public land

decision-making. While there is clear overlap between a
number of these strategies, we highlight below core
methods and results related to each strategy, with details
found in the Supplementary Methods.

2 | METHODS

2.1 | A brief introduction to habitat
suitability models

Habitat suitability models require occurrence data for a
species and either species absence data or what are
termed background data to assess the full range of envi-
ronmental conditions available to a species. These data
on species presence, species absence, and available back-
ground conditions are collectively termed location data.
Habitat suitability models pair location data with metrics
of environmental characteristics (predictors) that may
limit habitat suitability for a species, forming mathemati-
cal relationships between where a species does or does
not occur (when absence data are available) or where a
species occurs compared to what conditions are available
across the landscape (when background data are used
instead of absence data). These relationships can then be
applied across a landscape to predict all areas of poten-
tially suitable habitat for the species (Franklin, 2010).
Important considerations in creating habitat suitability
models include sampling bias related to location data,
what environmental characteristics are included, and the
nature of the mathematical relationships between predic-
tors and species locations (Jarnevich et al., 2015).
Response curve graphs that show the relationship
between habitat suitability over the range of observed
values for a specific environmental characteristic (predic-
tor) are typically used to visualize the latter, and the eco-
logical plausibility of each response curve is an important
consideration.

2.2 | Study areas and species

We focused on two study areas. The Farmington study
area encompassed parts of northwestern New Mexico
and adjacent southwestern Colorado, related to the BLM
New Mexico Farmington Field Office (Figure 1c–e). The
Taos study area encompassed the north central portion of
New Mexico and adjacent areas in Colorado, related to
the BLM New Mexico Taos Field Office (Figure 1a,b).
More details on the study areas can be found in the Sup-
plementary Methods.

The Farmington area included three species.
A. formosa is a perennial forb restricted to the Paleocene
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FIGURE 1 Locations used in model fitting (presence and absence), and new locations and observed suitability from model validation

through ground truthing for (a) Astragalus ripleyi, (b) Cymopterus spellenbergii, (c) Aliciella formosa, (d) Sclerocactus cloverae, and

(e) Townsendia gypsophila, and (f) the model extents considered for each species where the colored boxes of extents reflect the extent for

panels a–e.
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Nacimiento Formation. S. cloverae is a more broadly dis-
tributed species also associated with the Nacimiento For-
mation. T. gypsophila is a gypsophilic perennial forb.

The Taos area included two species. A. ripleyi is a
perennial forb occurring on a variety of habitats within
its range. C. spellenbergii is also a perennial forb found in
a subset of A. ripleyi's range. Additional information on
all five species can be found in the Supplementary
Methods.

2.3 | Coproduction

We assembled a project team for the modeling effort that
consisted of USGS staff with expertise in modeling and
coproduction, BLM staff with expertise in the species
and broader vegetation monitoring and data collection
efforts, other species experts, and BLM staff who conduct
permitting and other management actions and thus are
intended users of the modeling products. Project team
members ultimately included staff from three administra-
tive levels in the BLM: national, state, and local field
offices. Project team members committed to involvement
throughout the project, and to participation in a series of
meetings and work sessions to examine and provide
input on model inputs, initial results, and model
refinements.

2.4 | Documentation of model inputs
and methods

We began model development for the three species from
the Farmington Field Office, A. formosa, S. cloverae, and
T. gypsophila, in December 2019 and the two species in
the Taos Field Office, A. ripleyi and C. spellenbergii,
in February 2021.

2.4.1 | Occurrence data

We obtained species occurrence data from the BLM
(including the BLM FLORA database (Bureau of Land
Management, 2023a), BLM Assessment, Inventory, and
Monitoring (AIM) Program data (Bureau of Land
Management, 2022), oil and gas project surveys com-
pleted by environmental consultants, and Natural Heri-
tage New Mexico), and from species status reports
(Roth, 2015; Roth & Sivinski, 2015, 2018). We merged
these datasets and filtered location data by year, collec-
tion method, proximity, and location using species spe-
cific criteria (see Table S1 for specific filtering criteria for
each species), as it is important to ensure quality data are
used in developing models for rare species (Aubry

et al., 2017; Oleas et al., 2019). The number of occur-
rences changed with different iterations, but totals are
included for each model iteration for each species in
Table S3.

2.4.2 | Absence/background data

Because species absence data were minimal (Table 1 and
Table S1), we developed background data to use by itself
(Farmington area species) or to supplement absence
information (Taos area species). We used input from spe-
cies experts regarding the spatial extent of surveys and
survey bias to inform placement of background points,
and allowed the criteria used to derive background data
to evolve through our iterative process.

We masked out areas in agricultural and urban areas
as defined by the 2016 National Land Cover Database
(Dewitz, 2019) [NLCD classes 21, 22, 23, 24, and 82] start-
ing with model version 3 (Farmington) or model version
1 (Taos) so that background locations could not be placed
in these areas. We also excluded the footprint of a gyp-
sum mine near San Ysidro, New Mexico, that fell within
the training extent for T. gypsophila.

We randomly generated 10,000 background points on
BLM and state lands within training extents for
S. cloverae, A. formosa, and T. gypsophila, as these land
ownerships have been well surveyed for each of these
species. For initial models for A. ripleyi and
C. spellenbergii, we used absence points derived from
BLM Assessment, Inventory, and Monitoring plots. We
addressed bias issues that subsequently emerged through
our iterative process (see Section 3).

2.4.3 | Environmental predictors

Our selection of geospatial predictors was informed by
the species' ecology and extensive discussions with
experts on each plant species. This process resulted in
generation of 24 different predictors related to topogra-
phy, soils, and other characteristics (Table S2).

As part of the modeling process, we developed multi-
ple predictors from remotely sensed imagery to capture
differences in soil color, as species experts believed that
soil color reflected different underlying physical charac-
teristics that related to suitability for the different plant
species. Data sources for specific predictors changed
through model iterations as did the suite of predictors
included in models. Table S2 includes the full suite of
predictors that were included in any of the model itera-
tions for any species, while Table S3 includes information
on the specific predictors and data sources for each model
iteration for each species. We detail specific methods and
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processes that we used to create and refine individual
predictors in Table S2 and the Supplementary Methods.

2.4.4 | Model methods

We used the spThin R package (ver. 0.2.0) (Aiello-
Lammens et al., 2015) to enforce a minimum distance of
100 m between occurrence records, which matched the

resolution of our coarsest predictor. We input these spa-
tially filtered locations and the predictors described above
into VisTrails: Software for Assisted Habitat Modeling
version 2.1.2 (Morisette et al., 2013).

We selected initial sets of the predictors for each spe-
cies based on expert knowledge, and then removed one
of any pair of predictors with >j0.7j correlation coeffi-
cient from the maximum of the Pearson, Spearman, and
Kendall correlation coefficients to limit multicollinearity

TABLE 1 Description of model iterations including format and length of meetings to review model iterations, items discussed, and

changes made to location data and predictors.

Sclerocactus cloverae, Aliciella formosa, Townsendia
gypsophila Cymopterus spellenbergii, Astragalus ripleyi

Iteration
1

Informed by afternoon discussion of:
• Key characteristics of habitat for each species
• Use of Soil Survey Geographic Database soils data
• Quality of occurrence data
• Location of random background points across study area

Informed by virtual meetings and email discussions of:
• Decisions from Iteration 3 for other species
• Key characteristics of habitat modeled using existing

predictors
• Adding new predictor for tree cover

Iteration
2

Informed by 2-day virtual workshop in which we:
• Examined soil data sources with field personnel, resulting

in a switch to POLARIS soils data (Chaney et al., 2016)
which filled in some No Data gaps in the study extent

• Reviewed sampling underlying occurrence data, resulting
in altered background point placement.

• Resolved no data holes in prediction map extent

Informed by virtual meeting to review models and
subsequent email exchanges discussing:
• Using refined occurrence data and predictors
• Supplementing absences with background points to

capture ownerships sampled for presence but not absence
to resolve ecoplausability issues

• Agreement on final models from alternatives for A. ripleyi
• Following field-based ground-truthing design for

Farmington but with specific goals for each of these
species

• Resolved issues between predicted relationship with
elevation and known relationship

Iteration
3

Informed by 2-day workshop in which:
• Group reviewed models and designed field-based ground

truthing:
• Soil scientists and remote sensing experts recommended

new predictor sources
• Produced multiple model runs that included one of a set

of correlated predictors. S. cloverae: two predictor set
versions (Table S3b). T. gypsophila: four models with
different soil predictors (Table S3c)

• Refit selected S. cloverae version with new occurrences
collected in summer 2020 due to ground truthing COVID
delay

Informed by virtual meeting for each species in which we
discussed:
• Added new presence observations for both species and

added observed unsuitable ground truth locations as
absence points for C. spellenbergii

• Revising predictors based on model validation field-based
ground truthing results

• Increased predicted suitability for observed suitable
locations; opposite for observed unsuitable

Iteration
4

Virtual meeting for each species in which we:
• Added new presence observations gained from ground-

truthing
• Revised predictors based on review of ground-truthing

results
• Added observed unsuitable locales as background points

(S. cloverae)
• Updated soils predictor data source
• Updated other predictors like soils based on results from

the Taos iterations
• Increased predicted suitability for observed suitable

locations; opposite for observed unsuitable
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(Dormann et al., 2013). Because of its low sample size,
we had to further reduce C. spellenbergii predictors based
on expert opinion to ensure a ratio of at least 10 occur-
rence points to one predictor (Jarnevich et al., 2015).

We fit models using five algorithms (boosted regres-
sion tree (Elith et al., 2008), generalized linear model
(Hosmer & Lemeshow, 2000), multivariate adaptive
regression spline (Leathwick et al., 2006), Maxent version
3.4.1 (Phillips et al., 2017), and random forests
(Breiman, 2001)) using algorithm default settings within
Software for Assisted Habitat Modeling and 10-fold
cross-validation. We removed Maxent for the Farmington
species which had absence data because Maxent is specif-
ically for use with background data.

We assessed the need to tune parameters for each
algorithm by examining the difference between the train-
ing and average cross-validation area under the curve
(AUC; using an a priori criteria to investigate models
with difference values >0.05 for overfitting) and by visu-
ally inspecting response curve complexity.

Because none of the models were well calibrated, the
continuous predicted values from each algorithm repre-
sented relative suitability rather than probabilities of
occurrence.

2.5 | Ground truthing surveys

We implemented ground truthing with the primary goal
being to validate the accuracy of the highest bin (avoid-
ance areas) in the model ensemble, as BLM staff consid-
ered this to be their highest priority for the modeling
effort. We randomly generated potential survey points
within areas defined as available and feasible for ground
truthing surveys, considering distance from known loca-
tions, distance from roads, and land ownership (Table S4,
Figure S3). Generated points were skewed towards the
“high” class based on manager priority, with the number
of points per class defined by managers for each species
(Table S4).

Ground truthing surveys were conducted by BLM
staff or surveyors contracted by the BLM, and included
searches for the target species plus other study species,
qualitative assessment of the suitability of the location
for the target species, land cover class, topographic
feature class, associated species, and estimates of bare
ground cover (all target species), gypsum presence
(Farmington Field Office species), and basalt presence
(Taos Field Office species). Detailed information on
the survey protocol and data collected are provided in
the Supplementary Methods—Ground truthing proto-
col section.

2.6 | Iterating, assessing, and refining

We used an iterative modeling process, committing at the
start to developing multiple versions of each model, each
reflecting input and refinements suggested based on ear-
lier versions. We continued this process until the project
team was satisfied that we had a model deemed worthy
of ground truthing, and then continued to assess and
refine the model in light of ground truthing data and con-
tinued project team input. An important part of this itera-
tive process was documenting the process, changes made
during the process, and the rationale behind each
change.

Typically, following an initial model run informed by
those first meetings, the project team met to review
model results in depth for each model iteration and con-
sider results based on both individual's knowledge of the
species and the landscape and on statistical model evalu-
ation metrics (Table 1), though assessments were gener-
ally qualitative based on expert knowledge until the field
validation stage. At these meetings, the team considered
specific model inputs (occurrence locations, background
locations, predictors, extents) and results (ecological
plausibility of predictor importance and response curves,
spatial predictions, and novel environments) and made
specific recommendations for model refinement. The
modeling team then revised models using these recom-
mendations (e.g., updated occurrence data, revised place-
ment of background points, new geographic extents for
both inputs and output maps, new/revised environmental
predictors, revised masks of specific areas to exclude from
analyses such as croplands) to inform a next round of
iteration.

After ground truthing surveys, we compared modeled
habitat suitability predictions (unsuitable, low, medium,
and high suitability) to both qualitative habitat suitability
assessments conducted in the field (limited to validation
plots specifically for that species) and to any new occur-
rence locations identified (from any surveyed plots) for
each species. We compared the observed habitat suitabil-
ity at the survey site with the observed land cover class
and observed topographic feature class to evaluate if we
may have missed important predictors.

The team also evaluated maps of surveyed locations
and predictor values at those locations as another means
to evaluate predictors. This suite of information from
ground truthing surveys informed decisions for refining
and fitting the final models, including revising input
occurrence data and environmental predictors.

Finally, we examined changes in predictions relative
to observed habitat suitability between the validation
model version and final model versions.
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2.7 | Tailoring products for use in public
land decisions

We committed at the start of the project to peer-
reviewing and publishing all model outputs, to achieve
transparency and defensibility in our models and maps.
Publication was determined to be the best way to achieve
consistency in the maps being used by developers to
locate and design projects and the maps used by agency
staff to evaluate potential environmental impacts of those
proposed projects.

We also committed to creating tailored products that
would facilitate use by both developers and agency staff.
Thus, we worked with our project team to define three
suitability bins of levels of confidence based on BLM
intended uses of the models in management decisions
related to rare plants. BLM rare plant specialists and per-
mitting and management staff (the target end users for
the models) defined classes as (1) high: avoidance areas
(i.e., known occupied habitat plus highly suitable habitat,
considered core areas where species is found and that
developers should avoid if at all possible); (2) medium:
areas oil and gas developers may want to avoid and
where plant surveys would be required, still considered
as suitable habitat; and (3) low: areas where plant surveys
would be required as part of permitting, considered
potential habitat. We developed these bins using ensem-
ble techniques (details in Supplementary Methods;
Figure S2).

3 | RESULTS

3.1 | Coproduction

Our iterative, coproduced modeling framework was
implemented as a full partnership between the
researchers, species experts, and public land managers on
our project team. During the course of the study there
were five species experts and 10 land managers (generally
also species experts) along with consulting specialists
(soil scientists and remote sensing experts). We met more
than 15 times over the course of the project, using a com-
bination of both in person and virtual meetings (the
COVID-19 pandemic was declared during our study
period).

Initial meetings focused on model inputs: available
species observation data, available absence data, and spe-
cies biology and ecology that could inform compilation
and creation of relevant environmental predictors
(Table 1). Subsequent project teams meetings were the
mechanism through which our iterative modeling pro-
cess was implemented.

3.2 | Documentation of model inputs
and methods

A particularly important part of the modeling process for
our project team was working together to ensure that the
suite of predictors used to model habitat for each species
was relevant, high-quality, and comprehensive. Data
sources for specific predictors changed through model
iterations as did the suite of predictors included in
models. Table S2 includes the full suite of predictors that
were included in any of the model iterations for any spe-
cies, while Table S3 includes information on the specific
predictors and data sources for each model iteration for
each species. We found that many species-specific predic-
tors were not readily available and thus required
researching and assessing options to represent them. Ulti-
mately, we developed and included new predictors in the
habitat models for all species to account for unique char-
acteristics of the species being modeled, such as the geo-
logic formation to which A. formosa and S. cloverae are
restricted, predictors capturing gypsum for T. gypsophila,
and a basalt predictor for A. ripleyi and C. spellenbergii
(Table S2).

Gypsum proved particularly challenging to repre-
sent. We developed and tested many different options
for representing gypsum substrate based on both deriv-
atives from existing soil datasets such as the Soil Survey
Geographic Database (SSURGO) and different remote
sensing indices. Species experts reviewed alternative
predictor sets to capture gypsum for T. gypsophila and
suggested models based on different combinations of
uncorrelated options thought to match local knowledge
of gypsophilic soils (Table S3). Both T. gypsophila and
A. ripleyi model iterations included comparing alterna-
tive suites of uncorrelated predictors. Over the course
of the iterative modeling process, we ultimately consid-
ered up to four different sources for gypsum and other
predictors (Table S3).

3.3 | Ground truthing surveys

Agency staff and contractors surveyed a total of 250 sites
(Table S4), resulting in new observations for all species.
Ground truthing surveys for S. cloverae resulted in
59 new observation sites, with 38 of those (64%) in loca-
tions the draft model classified as high or medium suit-
ability (Figure S6), and five (8%) in the 29 plots classified
as “unsuitable” by field personnel. Other species had far
fewer new locations recorded during ground truthing
(five A. formosa, three T. gypsophila, two C. spellenbergii,
and one A. ripleyi; Figure S6), which may suggest that
these species are rarer than originally anticipated.
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3.4 | Iterating, assessing, and refining

Our iterative process was based on group review of maps
of occurrences (e.g., Figure 1), maps of potential predic-
tors, and review of model outputs including predictor
importance (e.g., Figure S4), response curves, and
mapped predictions (e.g., Figure S5) to assess ecological
plausibility. As such, model assessments for iteration
1 (all species) and iteration 2 (Farmington species) were
qualitative based on experts' assessment of ecological
plausibility. Assessment between the final two stages was
quantitative.

The iterative process resulted in multiple changes to
the habitat models for each species over the course of the
study (Table 1 and Table S3). These changes included
methodological changes (e.g., background point distribu-
tion), refinements to occurrence data, and changing both
predictor data sources and types. Model iterations
addressed different issues for different species.

For example, the Taos species (A. ripleyi and
C. spellenbergii) iteration 1 models included suitability at
higher elevations than species experts knew the species
to occur. We determined that bias issues in the location
data was the reason: our occurrence data fell on both
BLM and non-BLM lands but our absence data were from
BLM lands only, and there were environmental differ-
ences between ownership groups (e.g., U.S. Forest Service
lands included higher elevation areas compared to BLM
lands). To address this, we calculated the ratio of occur-
rence locations occurring on BLM lands to those
occurring on non-BLM lands. We then randomly gener-
ated background points on non-BLM lands so that the
ratio of BLM land absence points to non-BLM land back-
ground points was the same as the ratio of BLM occur-
rence points to non-BLM occurrence points. This change
resulted in a predicted relationship between occurrence
and elevation in iteration 2 that matched expert
knowledge.

Another example of iteration and refinement involved
discovering through visual inspection of maps that initial
models were predicting suitable habitat in crop circles.
Thus, the project team decided to exclude agricultural
areas from modeling (iteration 2 for Farmington species).

For S. cloverae, there were large differences in both
predictors included in models and predictor importance
across iterations (Table S3b, Figure S4). While bare
ground and soil texture drove the early models, the addi-
tion of distance to the Nacimiento formation, elevation,
and some remotely sensed indices to capture soil color
resulted in decreased importance for these two predictors
in subsequent iterations. Differences in mapped outputs
between the first two iterations reflect the change in soil
data source (Figure S5). Despite the smaller differences

between the final two iterations, there are notable differ-
ences in the mapped predictions, particularly on the East-
ern part of the Nacimiento formation where field
validation provided information for the previously poorly
surveyed area.

Models for the Taos Field Office species (A. ripleyi
and C. spellenbergii) were able to build on the region-
specific predictors that had already been developed for
A. formosa, S. cloverae, and T. gypsophila, such as
remotely sensed indices to capture soil color. As a result,
both A. ripleyi and C. spellenbergii required fewer predic-
tor changes and three rather than four model iterations.

Models continued to be iterated for each species until
the project team was comfortable that the draft model
reflected expert knowledge of the species, warranting
ground truthing. Models selected for ground truthing
included revised occurrence data, background data
restricted based on occurrence record sampling knowl-
edge, a mask to exclude urban and agricultural areas for
model fitting, and a revised set of predictors tailored to
individual species compared to initial iterations (Table 1).

Iteration continued after ground truthing. For exam-
ple, of the 110 surveyed plots targeting S. cloverae, 17 of
32 predicted “high” suitability plots were assessed as
“unsuitable” in the field. Many of these occurred in loca-
tions with high tree cover, which was not previously
included as a predictor. We thus added a tree cover pre-
dictor to the final version along with updates to some
other predictors (Table S3).

For the other four species, for which far fewer new
locations were identified during ground truthing, we
assessed models mainly based on comparing predicted
versus observed habitat suitability. The project team was
satisfied with the performance of the models for A. ripleyi
and C. spellenbergii, and predictor changes for the final
models were limited to updating existing predictors
(Table S3) and forcing the C. spellenbergii generalized lin-
ear model to retain basalt as a predictor as it is known to
be important and was retained by the other algorithms.
Predictor changes were considered for A. formosa, includ-
ing maximum slope in moving window and canopy
cover, but were ultimately rejected, so predictor changes
for it and T. gypsophila also only included updates to
existing predictors.

The final model versions had changes in the predicted
habitat suitability relative to the observed habitat suit-
ability from field validation (Figure S8, Figure 2). The
two species for which the pre-validation model had pre-
dicted unsuitable habitat in areas that were observed to
be suitable in the field no longer had this mismatch in
the final model. Additionally, the number of locations
observed as unsuitable in the field but with model predic-
tions of low, medium, or high suitability decreased
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FIGURE 2 Pre-validation modeled habitat suitability maps (i.e., the model version used to guide field validation surveys) and the final

model outputs for each of the five species (Astragalus ripleyi, Cymopterus spellenbergii, Aliciella formosa, Sclerocactus cloverae, and

Townsendia gypsophila), where the mapped values reflect the low, medium, and high suitability management categorizations.

10 of 15 JARNEVICH ET AL.

 25784854, 2024, 8, D
ow

nloaded from
 https://conbio.onlinelibrary.w

iley.com
/doi/10.1111/csp2.13179 by B

attelle M
em

orial Institute, W
iley O

nline L
ibrary on [27/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



between the pre-validated model version and the final
model version (Figure S8). For example, T. gypsophila
had five survey plots qualitatively assessed as unsuitable.
The field validation iteration model classified one of
these as low and four as medium suitability, while the
final model classified all of those locations as unsuitable.

3.5 | Tailoring products for use in public
land decisions

We ultimately determined that there were two needed
map products: maps of the low, medium, and high suit-
ability habitat areas for each species that are suitable for
use by specialists (e.g., agency botanists), and binary hab-
itat suitability maps for other model users (e.g., fluid min-
erals project review staff). Together this manuscript,
detailed methods (Supplementary Materials), and model-
ing software tracking provenance, provide transparent,
defensible results available for use by all stakeholders.

4 | DISCUSSION

Multiple-use public lands provide important habitat for
rare plants but are also subject to significant energy devel-
opment and other types of ground disturbing activities.
Maps of suitable habitat for rare plants can help both
developers and public land managers to design and site
projects and to identify and implement other measures to
minimize loss and degradation of suitable habitat for these
species. However, many habitat models are not suitable for
use at local scales, and managers may not understand or
trust the methods or data used to develop the models, all of
which can decrease their use in public land decision-
making. We worked to address these challenges by copro-
ducing a suite of ensemble habitat models using an itera-
tive framework coupled with comprehensive field
validation and tailoring of final products for use by all
stakeholders in public land management decisions.

4.1 | Coproduction

Models intended to support decision-making are more
likely to be viewed as legitimate by decision-makers if
they are coproduced (Seidl, 2015). We developed our
coproduction framework beginning in 2019, and were
pleased to find that Ramirez-Reyes et al. (2021) had inde-
pendently developed a very similar coproduction process.
The process involved collaboration between species
experts and modelers to determine model inputs (both
location and predictor data), review iterative models for

ecological plausibility, and design the format of model
outputs to meet the needs of practitioners. The frame-
work involved interaction at every step of the modeling
process outlined by Sofaer et al. (2019) and expanded by
Reese et al. (2019). Coproduction is one tool that scien-
tists and managers have used to increase trust and under-
standing by managers in the research process and buy-in,
use, and actionability of research products (Arnott
et al., 2020; Beier et al., 2017).

4.2 | Modeling inputs and process

Many habitat models rely on available predictors, such as
coarse climate data, which do not capture the microcli-
mate experienced by plants (Mod et al., 2016). Species
experts often understand which environmental factors
limit a species distribution, but these factors are not
always readily available as geographic layers. Developing
tailored environmental predictors from LandSat imagery
and other sources that reflect species-specific require-
ments was a key part of our modeling process. Others
have also found that accurately reflecting the environ-
mental complexity in models can affect how stakeholders
perceive the credibility of the resulting science products
(Rosemartin et al., 2023).

Soils are a key component defining suitable habitat
for plant species (Mod et al., 2016), and obtaining the best
available sources that species experts felt captured
ground conditions reasonably well required many steps
including carefully considering soil texture, composition,
color, and depth, and how these might be best repre-
sented for different species and locations using different
data sources. For example, we had to generate several dif-
ferent spatial layers to capture where gypsum might be
across the landscape that experts then reviewed to deter-
mine which best matched their knowledge based on their
time spent in the field. Many of these predictors were
derived from remotely sensed imagery (Leitão &
Santos, 2019). These tailored predictors helped
strengthen user trust in the modeling process and were
also important predictors in final models. Others have
demonstrated the need to have local scale edaphic factors
to produce good models, as rare species generally have
highly restrictive niche requirements (e.g., in situ mea-
surements for understory plants (Roe et al., 2022)).

4.3 | Iteration, assessment, and
refinement

The iterative review process allowed end users to
evaluate the ecological plausibility of models at
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multiple stages. Interactions with resource managers
and species experts started early, with discussions
of the species biology and consideration of the spe-
cific occurrence data to be used to fit the model,
and continued throughout—a key to success
(Rosemartin et al., 2023). End-users provided sugges-
tions to improve realism of the models by altering
model inputs based on knowledge of target species
and the local environment. Typically, these changes
involved revisiting predictors considered in model fit-
ting (Table 1). This input improved the models, as
has been seen by others (Glenn et al., 2022), and
ensured understanding of the models, overcoming a
common barrier to model uptake (Addison
et al., 2013).

We found that each iteration refined the models, as
exemplified with S. cloverae ensemble models for version
3 and 4. While 59 additional locations were included in
the version 4 model, none of these occurred in the east-
ern region of the Nacimiento formation (Figure 1 and
Figure S8) which had predicted suitability in version
3. However, model predictions for that region were still
refined in version 4.

4.4 | Ground truthing

Ground truthing resulted in changes in the predictor
suite for all species. Information from the qualitative
assessments of habitat suitability allowed comparison
with model predictions in cases where the rare species
simply were not found, which is likely common for
rare, specialist plant species relative to more generalist
rare species such as S. cloverae. Other research has
used plant community data to validate suitability pre-
dictions for rare plant species, including finding that
distance to nearest known occurrence was the stron-
gest predictor of whether or not a new population was
found with the model (McCune, 2016). This validation
step of testing models in the field, along with
co-production, also leads a higher degree in the confi-
dence of predictions (Sofaer et al., 2019).

4.5 | Limitations

Some limitations of the models were evident. For
most species, very few new occurrences were
detected, and a model based on presence/absence
data that predicts probability of occurrence or one
that captures temporal differences including dispersal
limitations might be more useful (Guillera-Arroita
et al., 2015).

4.6 | Tailoring products for use in public
land decisions

Model outputs, including their validation, were tailored
to intended use in decision-making. This focus on deci-
sions to be made by specific stakeholders is an important
step in ensuring models can be used to meet manage-
ment objectives (Byrd et al., 2023). In this case, thresh-
olds were chosen by managers based on desired
sensitivity (true positive rate) of the models for their
intended use (Guillera-Arroita et al., 2015). These criteria
for categories were developed by managers in light of
their intended use: high suitability represents avoidance
areas (known occupied and highly suitable habitat),
medium suitability indicates areas to consider avoiding
for any kind of land-use change and where plant surveys
would be required, and low suitability indicates areas
where plant surveys would be required before permitting.
It is important to note that public land managers would
still require plant surveys prior to any ground disturbance
in all three levels of habitat to avoid loss of individuals,
but that the three levels provide options for land man-
agers to work proactively with developers and other
stakeholders to enhance species and habitat conserva-
tion. Peer-review and open publication of the final model
outputs is a critical final piece supporting model use as
part of transparent, defensible, science-informed
decision-making on public lands (Executive Order
No. 13990, 2021).

We suggest that these models can be used to inform
proposed development actions on multiple-use public
lands in two ways, with benefits for rare plants and habi-
tats. First, model outputs could be used by developers to
help site proposed developments (e.g., individual oil
wells) in areas with low, or no suitability for these rare
plant species, limiting potential habitat loss and likely
streamlining and simplifying the entire permitting pro-
cess (e.g., Jarnevich et al., 2021). Publishing these model
outputs so that they are freely available to all interested
parties helps to facilitate this type of proactive action and
to eliminate elements of surprise in the permitting pro-
cess. The coproduced, iterative ensemble modeling
approach and ground-truthing of the models so that they
are especially suited to this type of local use builds confi-
dence in users, strengthens defensibility of the decision
process, and may help to decrease challenges to the use
of science information in decisions (Foster et al., 2023).
Second, when suitable habitat cannot be avoided, devel-
opers could plan ahead to have plant surveys conducted
during the limited windows each year in which the spe-
cies can be detected.

Models can also inform habitat management and con-
servation efforts on public lands. Agency staff could use
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this information to help inform vegetation management
actions (e.g., restoration, livestock forage vegetation treat-
ments, and fuels and forestry vegetation treatments), tar-
geting efforts in areas that avoid, protect, or may
ultimately provide important gains for the species. Maps
could also be used in conservation-related activities such
as species status assessments, as a critical piece of infor-
mation identifying both how much suitable habitat may
exist on the landscape and where it may be most promis-
ing to conduct surveys to identify potential new occur-
rences or populations. Finally, maps of suitable habitat
could also inform the designation of areas for protection
efforts (e.g., as Areas of Critical Environmental Concern)
in agency land use plans, which can provide longer term
protection for sensitive species. In all of these efforts,
decisions are typically made from the bottom up—with
individual staff applying the habitat model to the decision
at hand. As such, the agency understanding gained
through participation of staff and colleagues in the
modeling process, and the high-quality of model outputs
resulting from our iterative, coproduced process, combine
to support model use.
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