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Abstract

Bats are diverse and ecologically important, but are also subject to a suite of severe threats. Evidence for localized bat
mortality from these threats is well-documented in some cases, but long-term changes in regional populations of bats
remain poorly understood. Bat hibernation surveys provide an opportunity to improve understanding, but analysis is
complicated by bats’ cryptic nature, non-conformity of count data to assumptions of traditional statistical methods, and
observation heterogeneities such as variation in survey timing. We used generalized additive mixed models (GAMMs) to
account for these complicating factors and to evaluate long-term, regional population trajectories of bats. We focused on
four hibernating bat species – little brown myotis (Myotis lucifugus), tri-colored bat (Perimyotis subflavus), Indiana myotis (M.
sodalis), and northern myotis (M. septentrionalis) – in a four-state region of the eastern United States during 1999–
2011. Our results, from counts of nearly 1.2 million bats, suggest that cumulative declines in regional relative abundance
by 2011 from peak levels were 71% (with 95% confidence interval of 611%) in M. lucifugus, 34% (638%) in P. subflavus, 30%
(626%) in M. sodalis, and 31% (618%) in M. septentrionalis. The M. lucifugus population fluctuated until 2004 before
persistently declining, and the populations of the other three species declined persistently throughout the study period.
Population trajectories suggest declines likely resulted from the combined effect of multiple threats, and indicate a need for
enhanced conservation efforts. They provide strong support for a change in the IUCN Red List conservation status in M.
lucifugus from Least Concern to Endangered within the study area, and are suggestive of a need to change the conservation
status of the other species. Our modeling approach provided estimates of uncertainty, accommodated non-linearities, and
controlled for observation heterogeneities, and thus has wide applicability for evaluating population trajectories in other
wildlife species.
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Introduction

Bats are the focus of intense conservation interest [1] due to

their high levels of species diversity [2], their crucial roles in the

functioning of ecological communities [3,4], and the valuable

ecosystem services they provide to people [5,6]. Despite this

conservation importance, bats are subject to a suite of severe

threats [7,8,9], including disturbance and altered microclimates of

critical hibernacula and day roosts [10,11,12], loss and modifica-

tion of foraging areas [9,13,14], toxicity and changed prey

composition and abundances from pesticide use and other

chemical compounds [15,16], climate change [17,18], and in-

flight collisions with vehicles, buildings, and wind turbines

[19,20,21]. In addition, an important emerging threat to bats in

eastern North America [22] with potential to spread across the

continent [23], is white-nose syndrome, a disease of hibernating

bats caused by a newly-discovered fungal pathogen (Geomyces

destructans) [24]. Bats are often subject to more than one of these

threats simultaneously; such co-occurring threats may result in

synergistic or interacting effects, with impacts more severe than

from any single threat in isolation [25,26,27,28]. Combined with

bats’ long generation times and low reproductive rates [29],

mortality from these pervasive threats has raised concern about

the continued persistence of regional populations of several bat

species [10,30,31,32,33] and has highlighted a critical need to

improve understanding of the large-scale population dynamics of

North American bat species.

Evidence of local impacts of these threats on bats – such as

carcasses found in hibernacula after infection with white-nose

syndrome or beneath turbines in wind farms – is well documented

in some cases (e.g., [34,35]). However, local mortality events –

even when repeated over time or observed at many sites – do not
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necessarily indicate sustained, large-scale declines in bat abun-

dance. This is because local mortality events may simply not be

large or frequent enough to substantially affect regional popula-

tions [36], because affected populations may compensate for

mortality with increases in reproduction or immigration [37], or

because population declines in one locality may be offset by

increases in other localities [38]. For these reasons, and because of

high spatial and temporal variability in local population estimates

(P. de Valpine, T.E. Ingersoll & W. Rainey, unpublished), long-

term, regional estimates of abundance are essential to improving

understanding of bat populations [39].

Bats’ natural history and cryptic nature make them difficult to

monitor, and efforts to evaluate changes in the abundance of bat

species over large spatial and temporal scales have proven

challenging [40,41]. Challenges associated with censusing bats

result in part from their metapopulation structure and wide range

of roosting and behavioral characteristics. Mark-recapture meth-

ods, for instance, have generally proven unsuccessful for censusing

bat colonies, largely because colonies (and bat populations as a

whole) are not ‘‘closed’’, bats are rarely recaptured, and the

process of capture may lead to roost switching [41,42]. Hiberna-

tion surveys have been more consistently used to estimate bat

populations because hibernating colonies are relatively easily

located and reasonably permanent; many species form large

aggregated clusters during hibernation, the bats are relatively

inactive making counting more feasible, and many species exhibit

fidelity to particular hibernacula [43]. Population monitoring and

status determination for threatened and endangered species of bats

has therefore relied extensively on hibernacula surveys [44,45],

and many wildlife agencies have regularly counted bats along

repeatable, well-established routes in hibernacula where bats are

easy to observe and where colonies are believed to represent the

population at large. Thus, the most consistently-sampled, long-

term, and regional-scale data for bats in North America are from

surveys of bat hibernacula completed in caves and mines as part of

wildlife monitoring programs by state wildlife agencies. Data from

such state-led programs for hibernacula monitoring are critical to

understanding population changes in hibernating bat species.

Despite the advantages of hibernation surveys over other

existing data sources for North American bats, the raw data

produced by hibernation surveys are not perfectly suited to

estimating changes in long-term regional populations. For

instance, long-term, large-scale monitoring efforts led by multiple

independent agencies may vary spatially in scope, focus, and

available resources, and vary temporally with changing funding

environments, turnovers in personnel, and shifting conservation

priorities [46,47]. Together such factors may result in intermittent

surveys, unequal survey effort, or other observation errors which

complicate the estimation of long-term, regional changes in

abundance [48,49,50]. Bat counts from hibernacula surveys also

suffer from biases associated with highly variable cluster densities

of hibernating bats and detection challenges associated with varied

wall and ceiling textures and contours and fissures in hibernacula

[10,51]. Estimation of abundance from bat counts is further

complicated by the tendency of such counts to exhibit highly

variable, irruptive patterns resulting from both actual changes in

abundance and observation error (P. de Valpine, T.E. Ingersoll &

W. Rainey, unpublished).

The use of wildlife counts to understand long-term changes in

regional abundance also poses several additional, sometimes-

unrecognized statistical challenges [52]. These challenges include

the use of count data that do not conform to assumptions of

traditional statistical methods, including non-Gaussian and corre-

lated errors [53] and non-linearity [54]. Other major hindrances

to monitoring population trends using hibernation surveys are the

lack of knowledge of all hibernacula locations, infeasibility of

monitoring all known sites in a short time frame and the

complications associated with making unbiased estimates of bats

(i.e., count methods that account for detection probability are

warranted but have not been used extensively to date). The

potential presence of unknown colonies makes it necessary to

assume that trends observed in known colonies are representative

of all colonies. This assumption may or may not be valid and it

may introduce unknown variation in population trend assess-

ments. Thus, although hibernacula counts have become wide-

spread, estimates of long-term changes in regional bat abundance

from these counts are rare, or where available often do not include

measures of variance, confidence intervals, or account for

detection probability [40]. The resulting uncertainty about

regional population trends has hindered managers’ ability to

accurately assess bat conservation status, efficiently allocate scarce

management resources to high-priority species, and develop

effective management strategies [39].

A particular concern when using hibernation surveys to estimate

long-term changes in bat abundance is variation in survey timing

during the hibernation season [43]. Hibernation surveys are often

time-consuming, and with limited available personnel and

demands from various other competing conservation priorities,

state agencies may stagger surveys across a hibernation season or

change the dates at which surveys were conducted among years.

Thus, bat counts may reflect not only year-to-year changes in

abundance due to annual births, deaths, and migration, but also

within-season changes in abundance or detectability. Such within-

season changes may be important, especially if they represent

systematic shifts in survey date over time, as survey date reflects

progressive mortality over the hibernation period [24], as well as

within-season changes in bat detection due to timing of fall arrival

or spring emergence from hibernacula [55], winter movement

within a hibernaculum between states of unequal observability

(e.g., movement between ceiling surfaces and fissures, changes in

packing density of clusters, or between entrance rooms and remote

rooms to access preferred thermal microenvironments) [56], or

winter movement between hibernacula [57]. Thus, the variable or

inconsistent timing of surveys during the hibernation season could

generate detection inconsistency and bias long-term estimates,

even when surveying with consistent methods along standardized

routes.

Statistical methods that can address these potentially compli-

cating factors have been developed for other taxa and can be

applied to bat monitoring data. First, the use of generalized models

allows for the examination of data with non-Gaussian distributions

of the response variable, such as count data [58,59,60]. Second,

the incorporation of random effects in a mixed-effect model

provides a means to account for correlated errors (non-indepen-

dence) [53,58]. Third, additive models permit a systematic,

parsimonious examination of the variable response of relative

abundance to time, and thus enable modeling of a non-linear

population trajectory (enabling inference about temporal changes

in trend) rather than solely assuming a linear population trend

[52,54]. Fourth, the use of smoothing terms may facilitate

interpretation of irruptive data by providing regression between

sample periods, while allowing deviation from linearity to be

systematically modeled (P. de Valpine, T.E. Ingersoll & W.

Rainey, unpublished). Fifth, hierarchical models can account for

sampling heterogeneity due to differing sampling effort across

space or time [61]. Finally, inconsistencies in the timing of bat

hibernation surveys could be addressed by modeling within-season

variation as a covariate (i.e., using models of within-season
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variation to estimate the bat count that would be expected if all

data had been collected on the same date each year). Each of these

elaborations can be accommodated with a statistical approach

using generalized additive mixed models (GAMMs; [62]), a type of

implicit-process hierarchical model that estimates non-linear

variation in relative abundance over time [52,61]. GAMMs

provide an approach that is well-suited to modeling regional

population trajectories of species across time while accounting for

heterogeneous observation processes.

Our objective in this study was to improve understanding of

temporal changes in regional bat abundance in a four-state region

in the eastern United States. Specifically, we examined two

principal research questions. First, how do inconsistencies in the

timing of sampling within a season affect across-year estimates of

regional bat abundance? And second, have trends in relative

abundance of hibernating bats in the eastern United States

changed at the regional scale in recent years? We focused on four

hibernating bat species for which we could obtain data sufficient to

model regional changes over time: the little brown myotis (Myotis

lucifugus), the tri-colored bat (Perimyotis subflavus), the Indiana myotis

(M. sodalis), and the northern myotis (M. septentrionalis). We focused

on changes in the abundance of these species in the region

comprising New York, Pennsylvania, West Virginia, and Tennes-

see during a 13-year period.

Methods

Data collection
We obtained data on the four focal bat species from state

agencies in New York, Pennsylvania, West Virginia, and

Tennessee. Data were from hibernation surveys completed during

1999–2011 by trained biologists as part of long-term wildlife-

monitoring programs. Surveys were performed during the

hibernation period from December-March in caves and mines

known to serve as bat hibernacula for one or more bat species. Out

of concern for negative effects of disturbing hibernating bats [12],

and due to limited personnel and resources for monitoring,

hibernation surveys were typically conducted once every two to

three years [42]. In simple hibernacula, most accessible areas of

the hibernaculum were surveyed during a single visit. In complex

hibernacula, surveys were restricted to specified survey routes.

Very large, complex hibernacula were divided into multiple survey

routes. During surveys, bats were visually counted where they

hibernated on walls and ceilings [42,43]. In some cases, large

clusters were photographed during surveys and later counted from

photographs to minimize disturbance and improve accuracy of bat

counts [43].

Datasets
From the full datasets provided by state agencies, which

comprised data from more than 636 surveys along 163 survey

routes, we selected those surveys that provided the most reliable,

consistently-collected count data on hibernating bats. On the basis

of survey notes, we excluded all surveys that were incomplete or

inconsistent, that were focused on recording incidence of white-

nose syndrome in hibernacula rather than counting hibernating

bats, or that deviated from established survey routes. We also

excluded routes for which only a single survey remained in the

dataset. The resulting dataset included a mean of 3.95 (range: 2–

10) surveys per route. Because of the potential influence of survey

timing on bat counts (see Introduction), we examined the extent of

within-season and across-year variation in the timing of hiberna-

tion surveys with boxplots.

We examined the dataset separately for each bat species. To

reduce zero-inflation due to inclusion of unsuitable habitat in the

dataset, we excluded routes in which the focal bat species was

never observed. This rendered a sample of 577 surveys along 145

routes counting 982974 individual M. lucifugus, 576 surveys along

145 routes counting 68148 individual P. subflavus, 284 surveys

along 62 routes counting 136386 individual M. sodalis, and 460

surveys along 109 routes counting 5206 individual M. septentrionalis.

Data are provided in Appendix S1.

Global model
To evaluate temporal changes in regional abundance, we

identified a global mixed-effects model a priori [63]. Route terms

were assigned to random effects, to represent our sample within

this population [53,58]. Since detection probability was not

explicitly estimated and metapopulation boundaries were un-

known, data from hibernacula surveys represent an unknown

fraction of the population rather than a complete census [43]. We

therefore limited inference to relative, rather than absolute

abundance [61]. To represent within-season and year-to-year

variation, this model included fixed-effects terms for day-of-winter

(Day), which indicated date of the survey in number of days since

December 1, and year (Year). To relax assumptions of indepen-

dence to accommodate hibernacula with more than one survey

route, we controlled for between-site variation by nesting survey

route within hibernaculum with a random grouping term [58] and

modeled unmeasured differences between hibernaculum with a

random-intercept term [58,64]. Terms for the global model are

represented by the following equation:

E yit½ �~g uizs1 Dayð Þzs2 Yearð Þzvik jð Þt
� �

ð1Þ

Where yit*Pois E yit½ �ð Þ

E yit½ � is the expected count for species i at time t, g is the inverse of

the selected link function (in our case the inverse of the natural

logarithm ln), ui is the mean count for a species, s1 and s2 are

smoothing functions for Day and Year, and vik jð Þt is a random effect

for species i, at survey route k nested within location (hibernac-

ulum) j and time t. The model assumed Poisson-distributed counts.

Model selection
We then modified the global model to create a final model for

each bat species, using a step-wise reduction in fixed and random

effects. We evaluated the utility of including smoothing functions

(cubic regression splines) to examine temporal variation in the

fixed effects in the final model for each species by comparing

smoothed and unsmoothed versions of the explanatory variables

Day and Year. Each candidate model was generalized using a log-

link and Poisson distribution. The assumption of Poisson-

distributed counts was validated through graphic comparison of

results for each species using Poisson models and overdispersed

models using the quasi-Poisson structure. Because little distinction

was evident between these models, we proceeded with the

assumption of Poisson-distributed counts, which facilitated model

selection. To improve model clarity and reduce the potential for

over-fitting, we used smoothing functions with a maximum basis

dimension that was large enough that extrema were apparent, but

small enough that curvature was simple [53]. These were

maximum basis dimensions larger than half the number of time

steps by year, but smaller than the total number of time steps by

year. We then selected the final model as the best candidate model

Bat Population Trajectories
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for each species given the data with Akaike’s Information Criterion

(AIC; [63,65]). This model selection process was completed with

the statistical computing language R version 2.14.0 [66].

Predictive GAMMs
We produced separate GAMMs from the final model for each

species [54,67] in R [66]. Sample R codes are provided in

Appendix S2. Final model terms were fit using penalized quasi-

likelihood methods in the R software package mgcv [68]. Library

mgcv computes effective degrees of freedom for smoothed terms

from the trace of the GAMM influence matrix, for computing AIC

values [62]. We examined the within-season response of relative

abundance to smoothed Day graphically. To examine variation

across years, we extracted parameters from the GAMMs to

populate predictive models, then fixed the value for Day at its

median for each species, calculating trajectories as if they had all

been sampled on the same day-of-winter. We compared trajec-

tories with and without correction for variation in survey date. We

calculated expected values and approximate confidence intervals

using the R function predict [69]. Confidence intervals were

estimated at plus and minus twice the standard error [62]. Because

the interpretation of confidence intervals at multiple time periods

within a repeated measures context is subject to debate ([52]; P. de

Valpine, T.E. Ingersoll & W. Rainey, unpublished), we used the R

function anova [66] to calculate p-values for the smoothed Day and

smoothed Year terms, testing the null hypothesis of unchanging

relative abundance over time.

Because our GAMMs estimate relative, rather than absolute

abundance [61], we sought to avoid the perception that estimates

of relative abundance were informative of absolute abundance.

We therefore normalized estimates for E yit½ � after calculating

trajectories [52], providing a common scale of relative abundance

for all species. To avoid selection of an arbitrary baseline year

from which to normalize counts and measure population changes

over time, we calculated the relative abundance of a species by

dividing predicted values by the maximum expected value for that

species. Thus, our normalization procedure set the maximum

abundance estimate for a species during the study period equal to

1.0. Because the GAMMs produced a complex series of additive

terms, predicted relative abundances and confidence intervals

were rendered graphically for ease of interpretation.

To evaluate the influence of bias from within-season survey date

on estimates of long-term population trajectories, we compared

corrected trajectories (which accounted for variable survey date)

and naı̈ve uncorrected trajectories (where survey date was not

included in the model). Corrected trajectories were from the final

models for each species, and models for uncorrected trajectories

excluded the fixed effect for Day. In one species (P. subflavus), Day

was not selected in the final model (see Results), so comparison was

between the final model and the best alternate model that included

Day.

Results

Survey timing
The timing of hibernacula surveys varied substantially within

the hibernation season in every year, and exhibited a systematic

shift towards later dates (Fig. 1). Half of all surveys in each year

were conducted during a 3–6 week period from late January to

early March, but some surveys were conducted as early as mid-

December and as late as the end of March. Within-season

variability in survey date was highest in 2008. The median survey

date was early February in most years, with a trend toward later

date with time starting in 2006 (Fig. 1). In three years, median

survey date was particularly late; ,1 week later than other years in

2010, and ,2 weeks later in both 2002 and 2011.

Figure 1. Timing of hibernation surveys across years. Box plots showing date of hibernacula surveys during 1999–2011.
doi:10.1371/journal.pone.0065907.g001
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Model selection
AIC model selection (Table 1) resulted in the selection of the

fixed effects terms Day and Year for M. lucifugus, M. septentrionalis and

M. sodalis. Smoothed Day was selected for these three species,

smoothed Year was selected for M. lucifugus and linear Year was

selected for M. septentrionalis and M. sodalis. For P. subflavus, linear

Year alone was selected. Random intercept terms for Route were

selected for all species, and Route within Location was selected for M.

lucifugus.

Predictive GAMMs
Relative abundance varied non-linearly with survey date within

the hibernation season, in all species except P. subflavus (smoothed

Day terms, M. lucifugus, F6.48 = 10.03, p,0.001; M. sodalis,

F5.90 = 21.88, p,0.001; M. septentrionalis, F4.34 = 2.93, p = 0.033;

Fig. 2; Appendix S3), suggesting that, if not accounted for,

systematic heterogeneity in survey timing would bias relative

abundance estimates in three of the four species. When comparing

long-term trajectories corrected for survey timing (blue traces in

Fig. 3) versus naı̈ve uncorrected trajectories (red traces in Fig. 3),

we found that uncorrected models underestimated relative

abundance for M. lucifugus in most years (Fig. 3A). Declines in

M. sodalis were underestimated in uncorrected models (Fig. 3C).

Declines in M. septentrionalis were overestimated in uncorrected

models (Fig. 3D). As expected, due to the insignificant effect of

survey day for this species, trajectories from corrected versus

uncorrected models for P. subflavus were nearly indistinguishable

(Fig. 3B).

Corrected estimates of regional relative abundance demonstrat-

ed marked declines across the study period for each species

(smoothed Year terms, M. lucifugus, F4.912 = 42.69, p,0.001; P.

subflavus, F1 = 30.02, p,0.001; M. sodalis, F1 = 18.68, p,0.001; M.

septentrionalis, F1 = 3.90, p = 0.049; blue traces in Fig. 3; Appendix

S3, S4). Some growth in the regional population of M. lucifugus was

evident prior to 2004 (Fig. 3A; Appendix S4). Dynamics of the

final models were remarkably similar among the other three

species, exhibiting slow, steady declines in all cases (Figs. 3B, 3C,

3D; Appendix S4). Cumulative declines in regional relative

abundance by 2011 from peak levels were 71% (with 95%

confidence interval of 611%) in M. lucifugus, 34% (638%) in P.

subflavus, 30% (626%) in M. sodalis, and 31% (618%) in M.

septentrionalis (Appendix S4).

Discussion

Population trajectories
Our results clearly show that within our four-state study area of

the eastern United States, the regional populations of M. sodalis

and M. septentrionalis were in decline (Fig. 3C, 3D; Appendices S3,

S4) and the regional population of M. lucifugus was in sharp decline

(Fig. 3A; Appendices S3, S4). Our data are strongly suggestive that

the regional population of P. subflavus was also in decline (Fig. 3B;

Year term in Appendix S3), though our estimates of decline for this

species did not exceed 95% confidence intervals (Fig. 3B;

Appendix S4). It is unclear why M. lucifugus would be declining

faster than the other species, but each of these species varies in the

location and environmental conditions of preferred foraging and

hibernation sites [70], and these factors may be important in

determining susceptibility to disturbance [12] and population-level

responses to climate change [18] and disease [71]. As the most

common hibernating species in this region, and one that clusters in

large aggregations [70], M. lucifugus may also be particularly

susceptible to disturbance [12] and bat-to-bat transmission of

diseases such as white-nose syndrome [71,72]. It also is the

recipient of less conservation attention than the other species that

aggregates in large clusters in the region, M. sodalis, which is

federally-protected [45].

Population dynamics varied by species. We estimated that the

relative abundance of M. lucifugus fluctuated slightly and gradually

during the beginning of the study period (although still well within

confidence intervals during this period), reached a peak in the

study area during 2004, then declined severely and persistently

thereafter (Fig. 3A; Appendix S4). Trajectories for all other species

suggested a persistent declining trend throughout the study period

(Fig. 3B, 3C, 3D; Appendix S3, S4). These different model

dynamics may have occurred because the greater amount of data

on M. lucifugus enabled us to determine finer-scale temporal

variation in regional population trajectories. Alternatively, these

dynamics may represent ecological differences among the species

in response to environmental conditions or to ongoing threats. The

pre-2004 increase in M. lucifugus could suggest a period of

favorable environmental conditions against a background of

overall decline, bat recovery after past declines, colonization of

new winter habitat (perhaps associated with climate change), or

changing levels of threat over time.

Our estimates of decline were less severe than previous estimates

[22,32]. This difference is likely because, unlike previous studies,

our study analyzed data from hibernacula from across the region,

including not only hibernacula infected with white-nose syndrome,

but also hibernacula where white-nose syndrome had not been

detected. Additionally, our estimates utilized the first multi-species,

regional estimates of long-term trajectories in abundance of bat

populations in North America to account for several factors

believed to bias estimates of abundance from wildlife count data:

non-linearity with time (Figs. 2, 3), non-Gaussian error distribu-

tions, variation among sites, and correlated errors [48,49,50]. In

addition, although we were not able to explicitly estimate

heterogeneous detection probability with these data, we did

correct for an important source of detection heterogeneity [48],

namely variation in sampling date (Figs. 1, 2, 3). Nonetheless, our

results indicate considerable cause for concern for the regional

populations of all four hibernating bat species studied. Although

substantial uncertainty remains in estimates for some species,

mean estimates of regional declines from their peak abundances

were equal to or greater than 30% by 2011 in all species studied

(Fig. 3; Appendix S4). The regional population of M. lucifugus is of

particular concern, as mean estimates of decline from its peak

abundance reached 71% by 2011 (Fig. 3A; Appendix S4). If

trajectories continue along their current paths (Fig. 3), substantial

further declines can be expected for each species in the near future

[22]. Because of the critical ecological roles of bats in directly

limiting populations of nocturnal arthropods through predation

[3,73,74], indirectly limiting herbivory by predated species of

arthropods in forests [73,75] and agricultural systems [5,76], and

providing the nutrient subsidies [77] that are essential to

supporting diverse and specialized cave fauna [78], the regional

declines in the abundances of hibernating bat species that we

observed could have important cascading effects in ecological

communities.

Within-season variation in abundance
Unlike previous studies, our methods corrected long-term

population trajectories for within-season variation. Such correc-

tion is needed to reduce bias, especially given the high variability

in dates of hibernacula surveys, and recent systematic shifts to later

date-of-winter for hibernacula surveys near the end of the survey

period (Fig. 1). In P. subflavus, survey date had almost no effect on

within-season estimates of relative abundance (Table 1B; Fig. 2B),
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and correction did not influence long-term estimates of relative

abundance (Fig. 3B). However, survey date had an important

effect on within-season estimates of relative abundance in the

other three species (Tables 1A, 1C, 1D; Figs. 2A, 2C, 2D). As a

result, our correction for survey date substantially changed

estimates of rates of decline and cumulative amounts of decline

in M. sodalis (Fig. 3C) and M. septentrionalis (Fig. 3D), and changed

estimates of patterns and timing of population changes (but not

cumulative amounts of decline over the study period) in M.

lucifugus (Fig. 3A).

The influence of survey date on within-season and across-year

estimates of relative abundance in these bat species may arise as a

result of changes in the size of colonies within hibernacula over the

course of the hibernation season. Hibernation imposes severe

physiological challenges on bats, including progressive energy and

evaporative water loss over the hibernation period [79,80], and

Table 1. Model selection.

Species Model DF AIC Di wi

A.) M. lucifugus

s(Year)+s(Day)+r(Route in
Location)

8 2144.071 0 0.9998691

Year+s(Day)+r(Route in
Location)

7 2163.075 19.004 7.47E-05

s(Year)+s(Day)+r(Route) 7 2163.644 19.573 5.62E-05

Year+s(Day)+r(Route) 6 2181.439 37.368 7.68E-09

s(Year)+Day+r(Route in
Location)

7 2190.005 45.934 1.06E-10

Year+Day+r(Route in
Location)

6 2191.708 47.637 4.53E-11

Year+Day+r(Route) 5 2208.487 64.416 1.03E-14

s(Year)+s(Day)+r(Location) 7 2345.763 201.692 1.60E-44

Year+s(Day)+r(Location) 6 2350.323 206.252 1.63E-45

Year+Day+r(Location) 5 2359.561 215.49 1.61E-47

s(Year)+Day+r(Location) 6 2365.796 221.725 7.13E-49

s(Year)+Day 5 3027.745 883.674 1.30E-192

s(Year)+Day+r(Route) 6 11396.335 9252.264 0

Year+s(Day) 5 11639.636 9495.565 0

Year+Day 3 3220720.178 3218576 0

s(Year)+s(Day) 6 NA NA NA

B.) P. subflavus

Year+r(Route) 4 1697.105 0 0.402352

Year+Day+r(Route) 5 1698.34 1.235 0.216985

s(Year)+Day+r(Route in
Location)

7 1699.257 2.152 0.137184

Year+Day+r(Route in
Location)

6 1700.094 2.989 0.090272

Year+s(Day)+r(Route) 6 1701.097 3.992 0.054671

s(Year)+s(Day)+r(Route) 7 1701.484 4.379 0.045052

Year+s(Day)+r(Route in
Location)

7 1702.857 5.752 0.022676

s(Year)+s(Day)+r(Route in
Location)

8 1703.106 6.001 0.020022

1+r(Route) 3 1705.114 8.009 0.007336

Day+r(Route) 4 1707.343 10.238 0.002407

s(Year)+Day+r(Location) 6 1709.976 12.871 0.000645

Year+Day+r(Location) 5 1712.217 15.112 0.00021

s(Year)+s(Day)+r(Location) 7 1713.513 16.408 0.00011

Year+s(Day)+r(Location) 6 1714.217 17.112 7.74E-05

s(Year)+s(Day) 6 2462.475 765.37 2.55E-167

s(Year)+Day 5 2524.623 827.518 8.15E-181

s(Year)+Day+r(Route) 6 7283.807 5586.702 0

Year+s(Day) 5 8027.605 6330.5 0

Year+Day 3 155617.2 153920.1 0

C.) M. sodalis

Year+s(Day)+r(Route) 6 1196.861 0 0.705854

Year+s(Day)+r(Route in
Location)

7 1198.612 1.751 0.294097

Year+Day+r(Route) 5 1217.254 20.393 2.63E-05

Year+Day+r(Route in
Location)

6 1219.254 22.393 9.69E-06

Table 1. Cont.

Species Model DF AIC Di wi

s(Year)+s(Day)+r(Route in
Location)

8 1219.361 22.5 9.18E-06

s(Year)+Day+r(Route in
Location)

7 1221.254 24.393 3.56E-06

Year+Day+r(Location) 5 1396.828 199.967 2.67E-44

s(Year)+Day+r(Location) 6 1398.828 201.967 9.82E-45

s(Year)+Day 5 1653.314 456.453 5.39E-100

s(Year)+s(Day) 6 1655.314 458.453 1.98E-100

Year+s(Day)+r(Location) 6 1655.314 458.453 1.98E-100

s(Year)+s(Day)+r(Location) 7 1657.314 460.453 7.29E-101

s(Day)+r(Route) 5 4811.008 3614.147 0

s(Year)+Day+r(Route) 6 4815.838 3618.977 0

s(Day)+r(Location) 5 5053.719 3856.858 0

s(Day) 4 5073.99 3877.129 0

Year+s(Day) 5 5074.828 3877.967 0

Year+Day 3 520913.1 519716.2 0

s(Year)+s(Day)+r(Route) 6 NA NA NA

s(Day)+r(Route in Location) 6 NA NA NA

D.) M. septentrionalis

Year+s(Day)+r(Route) 6 1884.042 0 0.963444

Year+Day+r(Route) 5 1890.656 6.614 0.035287

s(Year)+s(Day)+r(Route) 7 1897.422 13.38 0.001198

s(Year)+Day+r(Route) 6 1903.063 19.021 7.14E-05

s(Year)+s(Day) 6 2800.954 916.912 7.57E-200

s(Year)+Day 5 2844.404 960.362 2.78E-209

Year+s(Day) 5 5075.137 3191.095 0

Year+Day 3 24792.18 22908.14 0

Shown are information criteria for fit of models including the fixed and random
effects of (A) M. lucifugus, (B) P. subflavus, (C) M. sodalis, and (D) M.
septentrionalis. Fixed effects are Day, smoothed Day, Year, and smoothed Year,
and the random effects are Route and Route nested in Location. Best models
were selected on the basis of Akaike’s Information Criterion (AIC). DF are the
degrees of freedom, Di is the difference in AIC between the top-ranked and
listed model, and wi is the Akaike weight, the weight of evidence for each
model in the set given the data (where 1.00 represents the highest likelihood of
the model relative to other models). The number of models examined varied for
each species because some random effects were not applicable for some
species, due to the particular survey routes used.
doi:10.1371/journal.pone.0065907.t001
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these challenges are exacerbated by disturbance in hibernacula

[12] and white-nose syndrome [81]. As a result, progressive

mortality is expected, and should lead to a gradual reduction of the

colony (and declines in regional relative abundance) over the

hibernation period [24]. This could explain the within-season

declines we observed throughout the hibernation period in M.

sodalis (Fig. 2C), and the within-season declines late in the

hibernation period in M. septentrionalis (Fig. 2D). In addition, bat

species vary in the dates and duration of hibernation [55],

frequency of between-hibernacula movements [57], and propen-

sity to emerge from hibernation during intervals of warm weather

during winter [57]. Variation among bat species in hibernation

timing would cause a portion of the population to be present

outside of the hibernacula, and thus be undetectable during

hibernation surveys. Such variation could result in the non-

linearities in within-season patterns of relative abundance that we

observed in three of the four species in this study (Tables 1A, 1C,

1D; Figs. 2A, 2C, 2D).

The bat species’ differing roosting habits during hibernation

may also affect detectability, which could also help explain the

influence of within-season variation in survey date on bat counts.

In particular, the small size, distinctive forearms, and style of

roosting away from large aggregations make P. subflavus easy to

identify, and its habit of roosting as singles or in very small clusters

hanging on walls or ceilings make them relatively easy to count

throughout the hibernation season [82]. In contrast, the roosting

behavior of the other three species may vary throughout the

hibernation season in ways that affect detectability and thus bat

counts. M. septentrionalis also roosts as singles or small groups, but

tends to seek out crevices in walls or ceilings. Because differences

in temperature or environmental factors may affect how deep they

move into crevices [83], this species may vary in detectability

across the hibernation season, particularly in hibernacula with

high ceilings or deep crevices. M. lucifugus and M. sodalis, in

contrast, often hibernate in large aggregations. Although they

typically form large clusters (10’s to 1000’s) that are easy to locate,

these clusters may vary considerably in density of packing

throughout the hibernation season [82,84,85], perhaps also due

to temperature or other environmental factors [83]. These species

are also typically found on high ceilings, which makes estimating

Figure 2. Within-season temporal variation in bat counts. Relative abundance and approximate 95% confidence intervals during December-
March for (A) M. lucifugus, (B) P. subflavus, (C) M. sodalis, and (D) M. septentrionalis. Relative abundance was set equal to 1.0 at the maximum expected
value.
doi:10.1371/journal.pone.0065907.g002
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such within-season changes in cluster density difficult unless high-

resolution photography is used [51].

Threats contributing to bat population declines
It is not possible to definitively attribute population declines to

specific causes solely from count data, but the timing of changes in

population trajectories may be suggestive of key threats associated

with these changes [52]. White-nose syndrome has often been

assumed to be the key cause of regional population declines in

hibernating bat species in the region we studied, due to repeated

observations of mass mortality events associated with the disease

[22,32,34,86]. Our population trajectories, indicating persistent

declines in each species in recent years (Fig. 3; Appendix S3, S4)

are consistent with the interpretation that white-nose syndrome is

a severe and pervasive threat that has led to extensive declines in

regional bat abundance.

Our results (Fig. 3; Appendix S4), however, indicate changes in

regional bat abundances throughout the study period, including

declines in all species that began prior to the wide proliferation of

white-nose syndrome in the region beginning in 2008–2010, and

prior even to the first detection of white-nose syndrome in 2006

[22,34]. In M. lucifugus, we observed declines that began in 2004,

two years prior to the first recorded instance of the disease in the

region [34]. AIC-based inference in which linear models were

selected suggests that declines in all other species persisted across

the study period, and so preceded discovery of WNS by at least

seven years. Furthermore, insufficient evidence existed to support

a conclusion that rates of decline increased in the other species

following 2006 (Tables 1B, 1C, 1D). Mass mortality events due to

white-nose syndrome are associated with large numbers of bat

carcasses in hibernacula that should have been evident during

hibernacula surveys [22], so it is unlikely that the epizootic went

undetected for several years prior to 2006. Rather, additional

persistent threats likely contributed substantially to recent declines.

Which other threats could have caused recent bat population

declines remains unclear. Bat mortalities from in-flight collisions

with turbines have increased with expanding wind energy

development [20,21] since 2000 [87], but these have been

Figure 3. Long-term population trajectories. Expected relative abundance and approximate 95% confidence intervals during 1999–2011 for (A)
M. lucifugus, (B) P. subflavus, (C) M. sodalis, and (D) M. septentrionalis. Relative abundance was set equal to 1.0 at the maximum expected value. Two
trajectories are shown for each bat species: the trajectory with abundance estimates corrected for survey date of bat counts (in blue), and the
uncorrected trajectory (red).
doi:10.1371/journal.pone.0065907.g003
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primarily associated with fatalities of migratory, foliage- and tree-

roosting bats rather than hibernating bats [20]. Recent climate

changes could also have played a role [17,18], but climate changes

have been gradual in the region for at least thirty years [18],

including during periods in which bat populations were increasing

(Fig. 3A). Other long-standing threats, such as changes to critical

roosting [10,11,12] or foraging habitat [9,13,14], in-flight colli-

sions with vehicles or buildings [19], or effects of pesticides and

other chemical compounds [15,16,26] may also have influenced

regional bat abundances, though it is unclear whether any single

threat could have produced the persistent declines we observed

(Fig. 3). The temporally-variable trajectory of M. lucifugus in

particular may reflect synergistic or interacting effects of multiple

threats [52], perhaps in conjunction with bat population responses

to variable environmental conditions [17]. Further study is needed

to clarify the relative importance of each threat for bat

populations.

Implications of regional declines in bat abundances for
bat conservation status

M. lucifugus, P. subflavus, and M. septentrionalis are not currently

federally-protected in the United States, whereas M. sodalis is listed

as Endangered [88,89], the most protected designation under the

federal Endangered Species Act. Several proposals are currently

being evaluated for listing the three currently-unprotected species

at the state or federal level within the United States (e.g.,

[33,90,91]). We do not evaluate the merits of these proposals here.

However, our results indicating multi-year, continuing declines

suggest a need for enhanced conservation efforts for all four bat

species, and for hibernating bat species more generally.

The IUCN Red List thresholds for assigning Vulnerable or

Endangered conservation status are, respectively, 30% or 50%

declines in population size, where causes of decline may not have

ceased or may not be understood [92]. According to the IUCN

Red List, M. sodalis is currently Endangered with a decreasing

population trend [30], and M. lucifugus, P. subflavus, and M.

septentrionalis all currently have an IUCN conservation status of

Least Concern with a stable population trend [30]. Our estimates

(Fig. 3; Appendix S3, S4), however, provide new evidence in our

study area of regional-scale declines in these species, and especially

in M. lucifugus. Specifically, in our study area, M. lucifugus exceeded

the 30% (Vulnerable) threshold of population decline by 2008 and

the 50% (Endangered) threshold by 2009. In both cases, the upper

confidence limit on M. lucifugus abundance estimates exceeded

these thresholds in the following year, indicating substantial

certainty in these results. The 30% threshold of population decline

was exceeded in our study area by 2010 in P. subflavus, and by

2011 in M. sodalis and M. septentrionalis, though upper confidence

limits have not yet exceeded the 30% threshold in these three

species. Note, however, that the declines in M. sodalis are on top of

persistent historical declines that occurred in the species up

through 2003 [30,31,89].

The implications of our regional-scale results for the conserva-

tion status of each species as a whole depend on whether the

declines we observed in our four-state study area are pervasive

across each species’ geographic range. The species M. sodalis [93]

and M. septentrionalis [94] and the subspecies M. lucifugus lucifugus

[95] and P. subflavus subflavus [96] occur principally in eastern and

northern North America, where many of the threats we identified

above are widespread and increasing [7,9]. This includes white-

nose syndrome, which has already spread from a single known

hibernaculum to 22 eastern, southeastern, and Midwestern states

and five eastern Canadian provinces in only seven years [97], and

has the potential to rapidly spread across the remaining entire

geographic ranges of each taxon studied here [93,94,95,96]. Thus

our results likely have strong implications for conservation status at

the species or subspecies level.

Sampling approach
The hibernacula surveys we used in this study and others

conducted by state wildlife-monitoring programs are the most

reliable and consistent datasets currently available for long-term,

regional studies of North American bats. Sampling effort across

the region each year is extensive, and the long-term nature of these

data provides an important historical record of population trends

in these bat species. Despite the great utility of this dataset,

however, it exhibited several potential sampling problems that are

typical of long-term regional monitoring programs [41]. It also

exhibited potential sampling problems that likely result from the

cryptic nature of bats and the difficulty of monitoring them.

In this paper, we addressed several of these potential problems

that would otherwise have biased our results. However, we were

unable to account for other potential problems, in part due to

limitations of the dataset. For instance, the survey routes in the

state monitoring programs that provided data for this study were

established in known hibernacula where hibernating bats could be

reliably observed, and as a result easily-surveyed and consistently-

used hibernacula may be overrepresented in the data. The extent

and net impact of such potential sampling bias (towards over or

underestimation) from the use of these particular sites for

monitoring cannot be determined from our data. In addition,

due to concerns about disturbance of bats during the hibernation

period [12], surveys were not repeated on the same survey route in

the same season (i.e., at most one survey was conducted per route

per year). This aspect of the dataset limited our ability to examine

interactions between temporal variables and to improve confi-

dence estimates via modeling of detection probabilities. Also, our

ability to identify key threats associated with population changes

was limited by a lack of data collected concurrently on factors that

may be correlated with bat counts. This limited us to using counts

as an index of abundance, an approach that could affect

interpretation of abundance changes if detection probability for

a species changed over time. Finally, although we used a 13-year

dataset, further historical data would have been beneficial to fully

characterize population dynamics prior to the onset of recent

declines and to more precisely identify the baseline from which to

calculate cumulative declines.

Such potential sampling problems could be addressed through

changes in the selection of survey routes and improvements in the

survey methods employed in the monitoring programs. Questions

about representativeness could be addressed through comprehen-

sive efforts to document all hibernacula followed by implementa-

tion of random sampling of hibernacula within the entire set of

hibernacula in the region. Improved survey methods could also be

developed that use limited-disturbance survey methods (e.g.,

thermal imaging video recording) that would allow some within-

season repeated measures to improve estimation of bat detectabil-

ity [61]. Improved survey methods could include the use of

double-observer methods for bat counts during hibernation

surveys that distinguish between observer error and natural

variability [49,98,99]. Survey efforts could also be expanded to

include the recording of standardized detection covariates (e.g.,

hours of effort, length of survey route, and distance from observer

to bat clusters) during hibernation surveys [49,61]. This informa-

tion could increase the accuracy and precision of estimates of bat

abundance, and facilitate efforts to distinguish the relative

importance of multiple threats driving declines. Continued

monitoring efforts are also needed to improve the estimation of
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population dynamics over time and directly and accurately

document further changes in conservation status. Other steps that

could increase the accuracy and consistency of hibernation surveys

are discussed in detail elsewhere (e.g., [41]).

Modeling approach
Some disadvantages of our modeling approach were also

apparent. Our results suggest that, despite our use of data from

636 surveys from 163 survey routes across four states, regional

population estimates were subject to substantial uncertainties

(Fig. 3). In addition, although temporal smoothing assisted with

identifying long-term regional patterns in highly-variable count

data, the smoothing could have had the side effect of obscuring

single-year changes in population trajectories. Other factors than

the observation heterogeneities we accounted for in this study,

such as within- and among-year climatic variation, could also have

affected bat detectability and thus estimates of population

abundance. In addition, our modeling approach would need to

be modified before being applied to datasets that exhibit significant

deviations from the Poisson assumption such as overdispersion.

Despite these caveats, our modeling approach provided several

important benefits. First, we were able to provide estimates of not

only relative abundance but also uncertainty (Fig. 3; Appendix S3,

S4). Both of these elements are essential to effective management

decisions, but few studies of bat populations have presented

estimates of uncertainty [40]. Our confidence intervals are wide in

some places (Fig. 3; Appendix S4), reflecting uncertainty in point

estimates due to the high spatial variability and irruptive temporal

variability (P. de Valpine, T.E. Ingersoll & W. Rainey, unpub-

lished) present in bat counts at individual hibernacula. Methods

for confidence interval estimation and interpretation for time series

data in GAMMs are incompletely developed, and should be the

focus of future study (P. de Valpine, T.E. Ingersoll & W. Rainey,

unpublished). Nonetheless, our results demonstrated strong

evidence of change at the regional scale in the abundance of each

species over time (Fig. 3; Year or smoothed Year terms, Appendix

S3). Thus, our modeling approach reduced bias and improved

interpretability of long-term regional population changes (Fig. 3),

despite high short-term and local variability.

Second, our modeling approach provided estimates over time –

not just before/after snapshots – while accommodating non-

linearities in population abundances over time. This aspect of the

modeling approach is important because there is no reason to

assume, as is routine [49], that changes in population abundance

over time will be linear [53]. Rather, non-linearity is especially

likely to be observed in long-term studies of populations that may

be responding to the combined influences of multiple environ-

mental factors and potentially complex suites of threats. Our use of

a modeling approach that accommodated non-linearity enabled us

to identify time-dependent changes in the population trajectories

and clarify the timing and extent of increases and declines in

population abundance, allowing inference of changes in trend.

Third, trajectory estimates over time accounted for non-

independent repeated-measures along sampling routes. The

selection of ‘Route within location’ for M. lucifugus (Table 1A)

but not the other species (Tables 1B, 1C, 1D) likely reflects both

environmental preferences for roost sites and sample size

differences. M. lucifugus appeared more commonly in more

complex hibernacula that were surveyed with several routes. In

addition, the greater amount of data for M. lucifugus (colony sizes as

well as numbers of surveys and routes in which it was detected)

enabled route-specific differences to be detected for this species in

these more complex hibernacula that were surveyed with several

routes. More generally, the use of the random grouping term for

location enabled us to relax independence assumptions, allowing

us to integrate the survey data from diverse sites – including data

from the single routes that are sufficient to survey simple

hibernacula and data from the multiple, non-independent routes

that are needed to adequately survey complex hibernacula – in the

same analysis. It also improved estimation of temporal changes in

abundance by accounting for some of the detection heterogeneity

associated with survey route.

Fourth, our modeling approach controlled for observation

heterogeneities. Controlling for changes in within-year variation in

survey date was particularly important, due to the potential of such

changes to systematically bias results over time. For example, we

observed a shift to later survey dates beginning near the end of the

study period (Fig. 1). According to survey notes associated with

hibernacula surveys, this shift was an intentional effort by

managers of the monitoring programs to facilitate the detection

of white-nose syndrome (which is easier to observe later in the

hibernation season; T.E. Ingersoll, unpublished) after its discovery

in 2007. However, such variation in survey dates (Fig. 2) could

combine with systematic, within-season changes in bat abundances

[24] and movements within and among hibernacula [55,56,57] to

affect long-term, regional estimates of relative abundance (Fig. 3).

Specifically, our models suggested that, if not accounted for in

models, changing survey dates would have biased abundance

estimates for M. lucifugus, M. sodalis, and M. septentrionalis (Fig. 3A,

3C, 3D; Appendix S3). Our focus on addressing observation

heterogeneities explicitly addressed this potential source of bias

and thereby improved the accuracy of our results.

Thus, our modeling approach proved useful in clarifying long-

term, regional trajectories of populations of hibernating bat species

on the basis of count data, by providing estimates of uncertainty,

accommodating non-linearities, and accounting for observation

heterogeneities. Such factors are often important in studies of

population abundances [40,48,49,50,54], and thus our approach

has wide potential applicability to other studies of wildlife

populations.
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