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Execu've Summary 

Marine mammal abundance and distribu>on data form an important part of assessments to es>mate the 

poten>al effects of proposed offshore wind developments. Therefore, there is a need to ensure that 

abundance and distribu>on data are collected and analysed to ensure robust es>mates to inform the 

planning, consen>ng and licensing processes. There are several sources of informa>on that can contribute 

to es>ma>ng the abundance and distribu>on of marine mammals. Digital aerial surveys (DAS) and sta>c 

passive acous>c monitoring (PAM) are two data collec>on modes, which have been developed rela>vely 

recently, compared to standard visual aerial and ship-based surveys used within the UK. Both digital aerial 

and sta>c PAM surveys can collect data on fine temporal and spa>al scales, though they have their 

strengths and limita>ons. Aerial surveys typically provide beMer spa>al survey coverage than sta>c 

acous>c recorders, while acous>c recorders generally provide improved temporal coverage. The 

overarching goals of this project were to: (1) produce a modelling framework integra>ng DAS and PAM 

data; (2) produce a test case study on harbour porpoise to validate the methods; and (3) provide 

recommenda>ons on standards for sta>c PAM and DAS data collec>on.  

This project ran from January 2023 – February 2024 and a series of technical mee>ngs were held by the 

project team to review data integra>on methods, available so_ware to assist data integra>on and survey 

design considera>ons and recommenda>ons. A dataset from the Moray Firth, Scotland, was prepared and 

analysed for the case study. The main deliverables were this final report and accompanying analysis code. 

Mul>ple methods to integrate DAS and PAM data were assessed. The selected method for the case study 

used a Bayesian model to calibrate the PAM data using absolute densi>es derived from the DAS data. This 

method allows uncertainty to be propagated in all elements of the density es>mators for both the DAS and 

PAM data. Currently available tools to assist with DAS and PAM data integra>on were also assessed. R-

based MRSea so_ware was used for the spa>al modelling components of the case study analysis, and the 

project also iden>fied how other R-based tools can be used for survey design (dssd/dsims) and to assess 

power to detect changes in density/abundance (MRSeaPower/AVADECAF). All assessed so_ware packages 

have poten>al for extensions, which would ul>mately aid data integra>on, though these were outside the 

scope of this project. Discussions about so_ware concluded that clear documenta>on and long-term 

support are key features of any so_ware used for analysis so should be considered a priority in any future 

so_ware development.  

The case study used PAM and DAS data in the Moray Firth from August and September 2010 to assess the 

distribu>on and abundance of harbour porpoise (Phocoena phocoena).  The analysis demonstrated the use 
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of Bayesian data integra>on following methods in Jacobson et al. (2017). A parameter combining detec>on 

probability of harbour porpoise clicks and probability of clicking was es>mated, with associated 

uncertainty. The es>ma>on of this parameter enabled absolute density to be es>mated from the PAM 

data, including during >me periods where no DAS were flown. This is the primary benefit of implemen>ng 

this method: long-term >me series of PAM data can be used to es>mate absolute densi>es, assuming that 

the parameters es>mated from the combined DAS and PAM data are representa>ve across the >me 

periods analysed. Density surfaces were also es>mated from the calibrated PAM data, showing spa>al 

changes in absolute density. This approach is likely to be of most prac>cal use in applica>ons to support 

offshore wind development, where DAS data are able to provide an es>mate of the absolute density of 

cetaceans (albeit with some limita>ons) and the PAM data play a suppor>ng role by collec>ng con>nuous 

data across the >me period of interest. Relevant code and data used for the case study are available on 

GitHub. Finally, survey design discussions within the project team highlighted key topics such as (1) 

defining project goals, (2) addressing survey design principles such as replica>on and coverage at the 

survey design stage using available so_ware tools, (3) using best available data regarding required 

parameters for density/abundance es>ma>on and (4) specific considera>ons rela>ng to DAS-PAM data 

integra>on. Future survey design-related research steps were also outlined, focusing on assessing how the 

number of PAM instruments and DAS flights influence precision and accuracy in the resul>ng calibrated 

PAM data. 

In conclusion, the following survey design recommenda>ons were suggested: 

• Clearly iden>fy the goals of a survey to ensure that the survey design will meet the needs of the 

survey goals. Goals may need to be priori>sed where there are several compe>ng goals and/or 

target species. 

• Follow exis>ng guidance for line and point placement for separate DAS and PAM surveys, though 

more research is needed to understand survey design requirements for an integrated survey. 

• Use exis>ng tools where possible to aid survey design, including assessing the power of the survey 

to detect changes in density and abundance. More so_ware tool development is required 

specifically for integrated surveys. 

• Consider the benefits of collecting data from more than one type of surveying platform. Different 

platform types offer different advantages; in this study combining DAS and PAM data led to a time 

series of estimated absolute densities that would not have been practically possible from one 

platform alone. More research is required, however, to determine how many DAS flights are 

required, and at what intervals, to optimally calibrate the PAM data. 

https://github.com/dvharris/PAMaerial
https://github.com/dvharris/PAMaerial
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Finally, the following future research direc>ons across the project were iden>fied and summarised: 

• There is a need to develop a so_ware tool to design combined DAS and PAM surveys, which could 

be an extension of exis>ng tools.  

• Several extensions to the case study analysis would be beneficial including: 

o Explore variability in the vp parameter via extended modelling and simula>on. 

o Compare the calibra>on approach with other reviewed data integra>on methods.  

o Explore the effects on precision and accuracy of es>mated parameters when including 

acous>c detec>on probability and cue produc>on rates as informed priors. 

o Use simula>on (based on the case study data) to assess how many PAM instruments and 

how many DAS surveys are required to achieve negligible bias and a suitable level of 

uncertainty in the resul>ng abundance es>mates. 

• Con>nued research into es>ma>ng detec>on probability and availability parameters for DAS data is 

important, given the need to es>mate absolute density from the DAS data when using the 

calibra>on method. This research may also include extrac>ng group size informa>on from DAS 

data. 
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Introduc'on 

Within the marine renewables industry, regulators need to make decisions regarding the consen>ng of 

proposed offshore wind developments. As part of Environmental Impact Assessments (EIA), Habitat 

Regula>on Appraisals (HRA) and Strategic Environmental Assessments (SEA) there is a requirement to 

assess the poten>al impacts to marine mammals from the development of marine renewable sites. Marine 

mammal abundance and distribu>on data form an important part of assessments to determine the 

poten>al effect of such ac>vi>es. Therefore, there is a need to ensure that abundance and distribu>on 

data are collected and analysed to ensure robust es>mates to inform the planning, consen>ng and 

licensing processes. 

There are several sources of informa>on that can contribute to es>ma>ng the abundance and distribu>on 

of marine mammals. The current standard within the UK is to use density and abundance es>mates for 

cetaceans from aerial and ship-based visual surveys conducted under the SCANS programme (Gilles et al., 

2023; Hammond et al. 2002; 2013; 2021) to define reference popula>ons, against which the likely effects 

at development sites can be gauged. Such surveys are conducted infrequently over large spa>al scales, and 

so abundance and distribu>on data at a finer scale are not available for the development sites (Hague et al. 

2020). As part of EIA processes, there is a need to both characterise the development site and provide 

baseline density and abundance es>mates for eventual pre- to post-impact monitoring. Digital aerial 

surveys (DAS) have become the offshore industry standard primarily for offshore ornithology studies. 

However, the method is not taxon-specific and data on marine megafauna, including cetaceans, are also 

collected.  Sta>c passive acous>c monitoring (PAM) is an alterna>ve method of data collec>on that detects 

the presence of vocalising animals. While there are other types of acous>c surveying planorms, such as 

ship-based towed arrays or glider-mounted hydrophones, these mobile acous>c monitoring planorms are 

not the focus of this study. Both digital aerial and sta>c PAM surveys can collect data on fine temporal and 

spa>al scales, though they have their strengths and limita>ons. Aerial surveys can typically provide beMer 

spa>al survey coverage than sta>c acous>c recorders, while acous>c recorders generally provide improved 

temporal coverage owing to their extensive deployment dura>ons and ability to collect data during hours 

of darkness and poor weather. Sta>c PAM surveys can be, however, spa>ally constrained when compared 

to dynamic surveys such as DAS. 

Absolute animal abundance and density can be es>mated from both aerial and sta>c passive acous>c data 

(e.g., Buckland et al., 2015; Marques et al., 2013). Abundance and density es>ma>on methods for both 
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survey modes share many of the same survey design and analysis aMributes but differ in some key aspects, 

as reviewed below.  

All absolute animal abundance methods such as distance sampling (e.g., Buckland et al., 2015) and spa>al 

capture-recapture (e.g., Borchers, 2012) require various inputs (both known constants and parameters that 

need to be es>mated). These inputs form an es>mator, an equa>on designed to convert detec>ons of the 

target species into an es>mate of absolute abundance. A general es>mator may take the form (Eqn 1.) 

N" = !
"#.%

   (Eqn. 1), 

where N"	is the es>mated abundance, n	is the number of detec>ons, P" is the es>mated probability of 

detec>ng the target species and m is a general term for other mul>plying terms that are needed to 

es>mate abundance e.g., group size if n is the number of detected groups or cue produc>on rate if n is the 

number of detected acous>c cues (see below for more detail).  

Further, if the monitored survey area is quan>fied, then animal density, D", can be es>mated (Eqn. 2): 

D" = N"
A*    (Eqn. 2), 

where A is the size of the surveyed area. If the monitored area was selected at random within a wider 

survey area, abundance es>mates can be obtained for the wider survey area by using the random 

proper>es of the design. Such es>mates are known as design-based es>mates. If not, model-based 

approaches, where density is modelled over space as a func>on of spa>ally explicit covariates, might be 

useful (e.g., Miller et al. 2013). 

The probability of detec>on, P, is a key parameter for abundance/density es>ma>on methods, correc>ng 

for objects of interest (i.e., individual animals, animal groups, or cues the animals produce such as sounds) 

that were available to be detected but were missed during a survey. In other words, the detec>on 

probability corrects for percep>on bias, which would, if ignored, cause density/abundance to be 

underes>mated. Es>ma>ng detec>on probability is an essen>al step for absolute abundance es>ma>on. 

Without P, or other required parameters (such as probability of detec>on on the transect line or call 

produc>on rate) an es>mator might be interpreted as a rela>ve index of abundance. Rela>ve indices of 

abundance rely on the major assump>on that the missing parameter(s) remain constant so that temporal 

or spa>al changes in the rela>ve measure are due to real changes in the abundance or density, and not 

changes in the parameter(s) missing from the es>mator. Therefore, absolute measures of density or 

abundance should be es>mated when possible (e.g., Anderson 2001). 
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In addi>on to detec>on probability, both aerial and acous>c density es>mators require addi>onal 

parameters that are challenging to es>mate. Aerial survey data analyses require an es>mated availability 

parameter, which in the marine context accounts for diving animals that are missed on the survey trackline 

because they are unavailable to be detected (e.g., Borchers et al., 2013). By es>ma>ng the probability of 

detec>ng an animal on the trackline, o_en described using the nota>on g(0) in the distance sampling 

literature, poten>al availability bias is corrected for, which would otherwise cause density/abundance to 

be underes>mated. Passive acous>c data analyses require a parameter to account for animals’ vocal 

behaviour e.g., the number of calls produced per minute, or the propor>on of >me that an animal is 

acous>cally ac>ve, discussed in Marques et al. (2013).  

O_en, data do not exist to directly es>mate detec>on probability, the availability parameter or the call 

produc>on parameter. In these cases, to avoid a rela>ve abundance index, data from two survey modes 

may be combined. This was the mo>va>on for this project, which had the following goals: 

1. Produce a modelling framework integra>ng DAS data and PAM data, including the ability to 

incorporate seasonal and diurnal uncertainty. 

2. Produce a test case study on harbour porpoise to validate the methods, producing density maps 

for a specified site in Scotland. 

3. Provide recommenda>ons on standards for sta>c PAM and DAS data collec>on. 

These goals were achieved by comple>ng the following tasks over the project’s 1-year >meline: 

Task 1: A technical mee>ng was held to discuss available methods for data integra>on (Sec>on 1).  

Task 2: A second technical mee>ng was held to assess how exis>ng so_ware tools developed within 

CREEM could be adjusted for combined data types (Sec>on 2).  

Task 3: Based on discussions in Task 2, a comprehensive roadmap of how the available so_ware tools could 

be extended was produced (Sec>on 2).  

Task 4: A dataset was selected and prepared for the case study (Sec>on 3).  

Task 5: The case study analysis was completed to produce density maps of harbour porpoise for the 

selected ScoYsh study site (Sec>on 3). 
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Task 6: The R-based dssd/dsims survey design tools were used for survey planning recommenda>ons. 

Tracklines for digital aerial surveys and the placement of acous>c instruments for an integrated survey 

were designed, using the same loca>on as the case study (Sec>on 4). 

Task 7: Finally, this report summarises all objec>ves and deliverables across the project.  
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Sec'on 1: Review of Methods to Integrate Passive Acous'c and Digital Aerial Data  

Integra>ng data from different survey planorms can be broadly separated into three categories: 

1. Combining results from mul>ple survey planorms once the same metric (e.g., absolute abundance) 

is es>mated from the data sets.  

2. Using an es>mate of absolute abundance/density from one survey planorm to es>mate parameters 

required to es>mate absolute abundance from the other planorm i.e., one dataset is used to 

calibrate the other. 

3. Integra>ng both datasets, each with missing informa>on about specific parameters, but both 

sharing other parameters, enabling the missing parameters to be es>mated for each dataset, 

leading to an es>mate of absolute abundance/density. 

NB: the second category can be considered a special case of the third category.  

Examples of each category are given below before a concluding sec>on that summarises why one 

par>cular method was chosen over the other approaches for the case study. 

Category 1: Combining data from different planorms using the same metric 

Examples of combining es>mates of data that have been analysed to produce the same metric are given 

here. Passive acous>c detec>ons and visual sigh>ngs of Dall’s porpoise (Phocoenoides dalli) from a Pacific 

ship-based survey were combined in spa>al modelling analyses (Fleming et al., 2018). The data were 

combined as encounter rates, given the limita>on that absolute density could not be es>mated from the 

acous>c data alone. Frasier et al. (2021) independently es>mated animal densi>es from both fixed 

(seafloor-mounted) acous>c and ship-based visual data for mul>ple species: Cuvier’s beaked whales 

(Ziphius cavirostris), Risso’s dolphin (Grampus griseus) and sperm whales (Physeter macrocephalus). Spa>al 

models were then es>mated using both a Generalised Addi>ve Model (GAM) and a Neural Network (NN) 

framework. Models incorpora>ng PAM data were preferred to models using the visual data alone (for both 

GAM and NN frameworks and based on selec>ng models with minimum root mean square error values). 

FiYng a model with joint PAM and visual data (rather than PAM-only or visual-only models) was the 

preferred model for all species using GAMs, while PAM-only NN models were preferred for Cuvier’s beaked 

whales and Risso’s dolphin, though a joint PAM and visual NN model was selected for sperm whales. 
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Category 2: Calibra>on of one dataset with the other 

In this approach, an es>mate of absolute density/abundance from one planorm can help to infer the 

missing parameters needed for density/abundance es>ma>on from the other planorm. For example, if Da 

and Dp refer to density es>mates derived from aerial and passive acous>c data, respec>vely, then Da can 

be used to es>mate the call produc>on rate, r, required for Dp. Let Dpc be es>mated call density from the 

acous>c data and assume that a robust es>mate of Da is available: 

D&+ = D'+ =	 !"#$

%&    (Eqn. 3). 

Therefore, 

r- = 	 !"#$

!'(
    (Eqn. 4). 

This ra>o es>mator is one way in which acous>c and aerial data could be integrated and would provide an 

es>mate of call produc>on rate suitable for es>ma>ng the absolute abundance of all animals (not just 

vocalising animals) from passive acous>c data. There are other possibili>es to integrate data, such as using 

the acous>c data as a second planorm in a double planorm mark-recapture framework to es>mate the 

availability parameter for a digital aerial survey (e.g., Rankin et al., 2020). To date, several studies have 

combined passive acous>c data and some form of visual data (whether from aerial surveys or ship-based 

surveys) to es>mate missing parameters.  

Perhaps the most relevant study in rela>on to the planned case study in this project is Jacobson et al., 

(2017), who used aerial survey data (from visual, not digital, sigh>ngs) to es>mate a parameter combining 

both the effec>ve detec>on area (EDA) of passive acous>c recorders for a harbour porpoise (Phocoena 

phocoena) survey and the probability of a porpoise clicking in a 1-second >me period. The passive acous>c 

survey was comprised of a grid of 11 cetacean click detectors (CPODs; Chelonia Ltd.) deployed between 

August 2013 and January 2014 using a systema>c, random design off the Californian coast in Monterey 

Bay. The study area was 370 km2. Fine-scale aerial surveys were flown on three days during October 2013 

covering 20 transect lines over the same survey area. The CPOD data were processed to determine the 

propor>on of porpoise-posi>ve-seconds (PPS) in a 12-hour period during daylight hours. PPS was the 

preferred metric for two reasons. First, a porpoise detec>on in a 1-second >me period is more likely to be 

a single animal than porpoise detec>ons within a 1-minute >me period (a standard CPOD data output), 

meaning that group size is not required in the density es>ma>on equa>on for the acous>c data. Secondly, 

using a 1-second >me window allows the assump>on that the animal is conceptually sta>onary, which is 
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an important assump>on for density es>ma>on methods. PPS were calculated over daylight hours only so 

that the acous>c detec>ons best matched the aerial detec>ons. The aerial data were divided into ~1 km 

segments and a detec>on func>on was fiMed to the perpendicular distances between the detec>ons and 

the transect lines using the Distance R-package (Miller, 2015). Beaufort sea state was included in the 

detec>on func>on model as a poten>al covariate affec>ng detectability. Then, segment-specific density 

es>mates were derived from the aerial data. Availability bias was accounted for by using an es>mate for 

the detec>on probability on the trackline, g(0), from a previous study (Laake et al., 1997). Porpoise 

densi>es were then es>mated at the specific CPOD loca>ons using Gauss-Markov smoothing. Gauss-

Markov smoothing was chosen as a method to prevent over-smoothing when interpola>ng the aerial data, 

thereby preserving observed patchiness in harbour porpoise distribu>on. 

A ra>o es>mator was used to link the aerial density es>mates with the acous>c data as follows: 

(# ),+
)*(,)

= !),+
.),+/'0

	   (Eqn. 5), 

where D"1,3 is the es>mated harbour porpoise density at each CPOD loca>on, l, on each of the three days 

(d). n1,3 are the number of PPS recorded on each instrument on each day. T1,3 is the corresponding >me (in 

seconds) that each CPOD monitored for each day in the designated 12-hour >me period. Finally, vp is a 

combined parameter of the effec>ve detec>on area of the CPOD, and the probability that a harbour 

porpoise echolocates in a 1-sec period. The equa>on was re-arranged to produce: 

n1,3 =
(#),+
)*(,)

× T1,3 × vp2	   (Eqn. 6). 

A Bayesian model was used to es>mate the parameters in the model, using the PPS and T1,3 as input data. 

D"1,3 was treated as a parameter to also be es>mated, with the D"1,3  es>mates and errors being included in 

the model as highly informed priors. g(0) was also included as an informed prior. Markov Chain Monte 

Carlo (MCMC) methods were used in the R-package R2jags (Su & Yajima, 2022) to fit the model. 

Key results from the Monterey Bay study were that nine CPODs returned data, yielding 640 high-quality 

echoloca>on click trains, totalling 15,717 clicks, during the daylight hours on the three days when the 

aerial surveys were flown. The PPS per instrument per day ranged between 0 and 114 s. The aerial surveys 

covered 1,228 km of on-effort transect lines and 245 groups of harbour porpoise were seen, with a mean 

group size of two animals. 
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The es>mated and interpolated density es>mates from the aerial data resulted in es>mated densi>es at 

each CPOD loca>on that correlated with the recorded PPS (see Fig. 5 in Jacobson et al., 2017). The resul>ng 

es>mated abundance using the acous>c data with the es>mated vp parameter gave similar means to the 

aerial-derived es>mates, though with larger confidence intervals. Abundance was also es>mated for the 

whole CPOD dataset, including months where no aerial data were collected, by assuming that vp remained 

constant over >me. Jacobson et al. (2017) also noted that if trend in abundance, rather than absolute 

abundance, was of key concern, then the uncertainty associated with vp could be ignored when 

interpre>ng the abundance trends over >me (see Fig. 9 in Jacobson et al., 2017). Assessing popula>on 

trends, rather than absolute abundance, in this way s>ll relies on the assump>on that vp remains constant 

over >me (and space). Jacobson et al. (2017) also noted that es>ma>ng the EDA for each CPOD separately 

would be preferable and may reduce the uncertainty. This would require more aerial surveys; Jacobson et 

al. (2017) suggested that 10 surveys would be required. 

A similar ra>o es>mator approach was taken in GerrodeMe et al. (2011) where visual sigh>ngs data from a 

ship-based line transect survey for vaquita (Phocoena sinus) was combined with passive acous>c data from 

a separate ship-towed acous>c array (also conduc>ng a line transect survey) to es>mate the acous>c g(0). 

Both the visual and acous>c surveys es>mated distances to detec>ons, so distance sampling could be used 

to analyse both datasets. The es>mator used for both datasets was: 

N" = !4*5
678"#)*(,)

     (Eqn. 7), 

where A is the study area, L is the on-effort trackline length, W is the trunca>on distance of the trackline, n 

is the number of detec>ons, s is the es>mated mean group size, P is the es>mated probability of detec>on 

and g-(0) is the es>mated probability of detec>ng a group on the trackline.  

The visual es>mate of g-(0) was es>mated using a double-observer protocol during the survey (Jaramillo-

Legorreta et al., 1999). To es>mate the acous>c g-(0), simultaneous acous>c and visual datasets were 

compared using a ra>o es>mator. The es>mators for absolute density were set equal to each other (with 

subscript v and a deno>ng parameters and constants rela>ng to visual and acous>c es>mators, 

respec>vely): 

!,4*5
67,8,)',0),0(,)

= !'4*5
67'8'''0)'0(,)

  (Eqn. 8), 

which was re-arranged to solve for acous>c availability: 
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g&2(0) =
!'7,8,',0),0(,)
!,7'8'''0

   (Eqn. 9). 

Any uncertainty in the parameter es>mates were combined using the Delta method to es>mate an overall 

CV for g&2(0)  (Seber, 1982). Simultaneous surveys occurred over 8 days and covered an area of 613 km2 (L/ 

= 165 km and L& = 132 km). There were 28 visual sigh>ng and two acous>c detec>ons in the calibra>on 

survey. These data were used to es>mate g&2(0) = 0.413 (CV: 108%).  The high CV was due to the low 

number of encounters during the calibra>on survey. 

Mark Recapture Distance Sampling (MRDS) is another method that has been used to combine passive 

acous>c and visual data (as opposed to ra>o es>mators as used in the two studies described above). 

During a visual ship-based survey of rough-toothed dolphins (Steno bredanensis) in the Pacific in 2007, 

Rankin et al. (2020) used passive acous>c detec>ons from a towed hydrophone array as the second 

planorm in an MRDS analysis, which enabled g-(0) to be es>mated (for the visual team and the acous>c 

team separately, and also when the planorms were combined). This study relied, however, on visual and 

acous>c detec>ons being matched, which is not a requirement for the presented ra>o es>mator 

approaches.  

Category 3: Integrated models with missing parameters in both datasets 

Extending the second category to allow both datasets to have missing parameters results in integrated 

modelling approaches such as the method outlined in Doser et al. (2021). Here, visual survey data were 

integrated with acous>c data in a Bayesian framework, where a joint likelihood was wriMen to 

accommodate detec>on probability in both datasets, as well as both a false posi>ve rate and call 

produc>on rate in the acous>c data. Simula>ons were first performed, fiYng the visual and acous>c data 

separately, as well as an integrated model, using MCMC methods in the R package jagsUI (Kellner, 2018). A 

case study was also performed using survey data of Eastern Wood-Pewee (Contopus virens). The case 

study dataset used recordings from 14 days in June, at four sites, across three separate years (2013 – 

2015). Results showed that the integrated model performed beMer than models with one source of data 

(Doser et al. 2021). Another study recently combined visual aerial and PAM data for North Atlan>c right 

whale (Eubalaena glacialis) abundance es>ma>on using a spa>al point paMern approach (Schliep et al., 

2023). Simula>ons were conducted first, before a two-day data set from Cape Cod Bay collected in April 

2009 was used to implement the method. One of the surveyed days allowed a direct comparison between 

a joint acous>c and visual model and a visual-only model. On this day, 46 whales were visually observed 
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and 486 calls were recorded. Results showed that the uncertainty in the resul>ng abundance es>mate was 

lower when using two data sources. 

Conclusions 

Based on the review of available methods and the discussions at a project mee>ng focussed on methods to 

integrate data, the calibra>on approach outlined in Category 2 was pursued for the case study. The 

ra>onale behind the choice of method was not driven by the temporal or spa>al coverage of the available 

data for the case study but was dependent on whether absolute densi>es could be es>mated from either 

planorm. It was not possible to es>mate densi>es from the CPOD data alone using methods such as 

distance sampling or capture-recapture, given that there was no fine scale spa>al informa>on (e.g., ranges 

or loca>ons) available about the detec>ons in rela>on to each of the CPODs. Other density es>ma>on 

methods are available (e.g., reviewed in Marques et al., 2013) though these require more auxiliary data 

and assump>ons, and are generally more labour-intensive to implement. Therefore, we discounted 

es>ma>ng densi>es directly from the CPOD data for this case study. This is a prac>cal considera>on that 

other monitoring programs will have to evaluate: whether absolute density is es>mable from the PAM 

data. Density es>ma>on from PAM data is dependent on the deployed PAM instruments and their 

configura>on, the target species and whether all auxiliary data required for absolute density es>mate is 

available or can be es>mated. This is applicable to any survey using PAM instrumenta>on, not just CPODs.  

In the case study dataset, absolute densi>es could be es>mated from the DAS surveys using a plot 

sampling method (where detec>on probability within the surveyed area is assumed to be certain) 

combined with an es>mate for g(0) (for case study details see Sec>on 3). Therefore, Category 1 methods 

were not appropriate, given that data from only one of the survey planorms could be used to es>mate 

densi>es (so combining absolute abundance es>mates derived separately from the aerial and acous>c 

planorms was not an op>on) and simply combining encounter rate data (as demonstrated in Fleming et al., 

2018) would not achieve the project goal of es>ma>ng absolute abundance. The methods described in 

Category 3 assumes that data from both planorms are missing key parameters whereas, in the case study, 

absolute densi>es could be es>mated from the DAS data. The most uncertain parameter required for 

absolute density es>ma>on from the DAS data is the g(0) es>mate, though the chosen Category 2 method 

based on Jacobson et al. (2017) allows previous informa>on about g(0) to be included as an informed prior 

and g(0) es>mated (with associated uncertainty). Further, Jacobson et al. (2017) provided a comparable 

study using the same instrumenta>on and surveying the same target species as our case study. Whilst the 

methods in category 3 could be applied here, implemen>ng the Category 2 Jacobson et al. (2017) method 

was considered a natural star>ng point, given that the results between the two studies could be compared.  
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Sec'on 2: Available SoCware Tools to Assist Data Integra'on  

A goal of the project was to provide so_ware to aid data integra>on, so exis>ng tools were evaluated that 

the project team had ready access to i.e., developed by several of the CREEM project team members, to 

see how these tools could either (1) be directly used in or (2) adapted for the selected modelling 

framework. Therefore, we do not suggest that these are the only tools available to prac>>oners, though 

many of the tools described below were developed to address specific research gaps and/or are now 

widely used by a variety of stakeholders (details given below for each described tool). We also note that 

this so_ware review was not focussed on abundance and density es>ma>on so_ware such as the R 

packages Distance (Miller et al., 2019), dsm (Miller et al., 2022) and ascr (Stevenson et al., 2015) but 

specifically on the survey design and power analysis tools available. There are relevant features in these 

packages, however, par>cularly the spa>al modelling capabili>es in the dsm package. 

First a generic survey design, monitoring, and analysis workflow is outlined (Fig. 1), before a descrip>on of 

the evaluated survey design and power analysis so_ware tools and how these tools would fit in the 

described workflow is provided. An overview of possible extensions that could be developed in the future 

is also included, highligh>ng the extensions that would par>cularly benefit the integra>on of PAM and DAS 

data (summarised in Table 1). A specific workflow for the category 2 data integra>on method chosen for 

the case study is then described, demonstra>ng where the so_ware tools fit within the workflow (Fig 2). 

Sec'on 2a: Survey Design and Analysis Workflow 

A typical survey design workflow might be as follows (summarised in Fig. 1): 

1. Establish project goals and research ques>ons (e.g., baseline monitoring of target species by 

obtaining absolute abundance, where end products are density surfaces of target species with 

associated uncertainty). 

 

2. Design a survey to meet these goals considering: 

a. Survey planorm(s) and survey methods to be used. 

b. Spacing of transect lines/point transects to achieve desired survey coverage/effort. 

c. For PAM surveys, number, configura>on, and capabili>es of deployed instrumenta>on; can 

detec>on probability be es>mated from each monitoring sta>on? 

d. Does the survey design have enough sta>s>cal power to detect change in abundance at the 

required spa>al and temporal scales? 
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e. Where spa>al modelling is required, are relevant environmental covariates also available or 

being collected e.g., sea surface temperature, primary produc>vity data. 

NB: in the survey design phase, any exis>ng relevant data e.g., pilot survey data or data from a 

similar study will provide valuable informa>on and help to op>mise the survey design. 

3. Data collec>on 

 

4.  Data analysis and survey design feedback 

a. A_er ini>al data collec>on, perform preliminary analyses of collected data to ensure that 

the assump>ons of the survey design are realis>c. Analysis steps will include:  

i. Process survey data (visual/digital and/or acous>c). 

ii. Es>mate absolute densi>es from the data where possible. 

iii. Perform spa>al modelling to produce density surfaces (with associated 

uncertain>es). 

b. Adjust the survey design if needed (re-considering points 2a – e as needed). 

c. On comple>on of data collec>on analyse whole dataset, following steps 4ai – iii. 

 

Fig. 1 Generic survey design, data collec>on and analysis workflow, with available so_ware tools developed 

within CREEM  

 

Establish project goals

Survey design

Data collection

Data analysis

Line/point placement: dssd/dsims 
Power analysis: AVADECAF (PAM only)  
   MRSeaPower 

 

 

 

Spa>al modelling: MRSea (PAM/visual/digital) 
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Sec'on 2b: Evaluated SoCware Tools 

1. dssd and dsims 

The R package “dssd”is a distance sampling survey design package used to define designs and generate 

transects (Marshall, 2022a) and “dsims” is a simula>on R package which extends “dssd” to addi>onally 

simulate popula>ons of interest and subsequent surveys to allow beMer assessment of design proper>es 

(Marshall, 2022b). These can be used to design op>mal line and point transect surveys and so are relevant 

to the design of both DAS and PAM surveys. The simula>on package currently focusses on design-based 

es>ma>on (Buckland et al., 2015). 

Possible future extensions to dsims are given below, with the extensions most useful to PAM/DAS data 

integra>on highlighted by “(PAM-aerial)” nota>on, though all extensions are relevant: 

• Include space-filling designs, which use an algorithm to achieve even placement of a given number of 

instruments within a study area, though uniform coverage may be lost (PAM-aerial, specifically for PAM 

data). 

• Facilitate cue-based analyses (PAM-aerial, specifically for PAM data). 

• Include designs with combined lines and points (PAM-aerial). 

• Implement downsampling to assess effect of fewer lines/points on coverage. (PAM-aerial). 

• Combine dssd/dsims and MRSea (see below). (PAM-aerial). 

• Incorporate model-based density es>ma>on op>ons. 

• Generate the popula>on only in the covered areas, not the whole study area. This should speed 

simula>ons up and allow larger popula>on sizes to be simulated.  

 

2. AVADECAF  

AVADECAF (Booth et al., 2017) is a set of R func>ons that perform a power analysis to address the ques>on 

whether a given acous>c survey design will allow a change in animal density to be iden>fied for a species 

of interest. Several input parameters are required to set up the power analysis such as the expected 

densi>es (e.g., via a density surface), detec>on probability es>mates and parameters related to acous>c 

behaviour of the target species. Survey data are simulated and analysed, then a Generalised Linear Model 

(GLM) is fiMed to the resul>ng density es>mates to see whether es>mates are changing over >me (by 

fiYng year or season as a covariate in the GLM). 

Possible future extensions to AVADECAF are: 

• Enable an exis>ng survey design to be uploaded, rather than genera>ng one in the so_ware (PAM-

aerial). 
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• Include variable spa>al density surfaces to incorporate the uncertainty in the density surface es>mates. 

Currently, only one density surface is generated per power analysis. 

 

3. MRSea and MRSea Power  

MRSea and MRSeaPower are R packages that allow the fiYng of spa>ally adap>ve models and spa>ally-

explicit power analysis (Mackenzie et al., 2013, ScoM-Hayward et al., 2021).   

The MRSea package fits Generalised Addi>ve Models (GAMs) to survey data and includes func>onality to 

account for spa>al and temporal correla>on in observed data, and can be used to compare different 

surfaces (e.g., between years or construc>on phases). MRSea is very flexible and can be used to model 

different data types e.g., PAM, visual, digital, telemetry data. In par>cular, it is the recommended approach 

by NatureScot for analysing aerial survey data for baseline site characterisa>on for marine ornithology 

(e.g., one survey a month over two years) (NatureScot, 2023).  

 

MRSeaPower is an extension of MRSea that enables a simula>on-based approach to power analysis with 

spa>ally explicit outcomes (power to detect change can be visualised across a study area).  

Possible future extensions to MRSea/MRSeaPower relevant to this work include: 

• Link with the dssd/dsims packages by (1) providing MRSea density surfaces to be used in dsims and/or 

(2) using dssd survey designs in MRSeaPower. (1) allows a real density surface to be used to determine 

the best survey design (PAM or DAS) and (2) allows spa>ally explicit power to be es>mated for a variety 

of survey designs. In principle this can be done with the exis>ng packages but has not been tried or 

tested. Further work would allow seamless integra>on and user documenta>on. (PAM-aerial). 

• Include ways to propagate uncertainty from machine learning species classifica>on from DAS/PAM 

data.    

 

Sec'on 2c: Conclusions of Available SoCware Review and Implica'ons for Case Study 

The review iden>fied that exis>ng spa>al modelling so_ware (MRSea) could be used for the spa>al 

modelling components of the case study analysis, and that other R-based tools can be used for survey 

design (dssd/dsims) and to assess power to detect changes in density/abundance 

(MRSeaPower/AVADECAF). How these so_ware tools fit into the workflow for the category 2 method is 

given in Fig. 2. However, it was concluded that there was no available so_ware that could readily combine 

PAM and DAS data, nor future extensions that could be implemented within the >meframe of the project. 

The review outlined where exis>ng tools could be extended in the future to facilitate (1) survey design of 

monitoring programs in general and (2) specifically combining data from PAM and aerial planorms 
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(summarised in Table 1). Finally, discussions about so_ware concluded that clear documenta>on and long-

term support are key features of any so_ware used for analysis so should be considered a priority in any 

future so_ware development.  

Table 1: Roadmap of the capabili>es of CREEM-developed so_ware tools poten>ally useful for integra>on 

of PAM and DAS data. 

CapabiliCes dssd/dsims MRSea MRSea 
Power 

AVADECAF 

Create survey design Yes No No Yes 

Upload exis>ng design 
for use in analysis 

Yes n/a Yes No 

Spa>al modelling 
capabili>es 

No Yes No No 

Power analysis (PA) 
capabili>es 

No No Yes Yes 

Spa>ally referenced 
power outputs 

n/a n/a Yes No 

Declines can be 
assessed in PA 

n/a n/a Yes Yes 

Spa>al redistribu>ons 
can be assessed in PA 

n/a n/a Yes Yes 

Changes in survey 
design can be assessed 
in PA 

n/a n/a Yes Yes 

Can work with non-
density data (i.e. 
detec>on-only) for PA 

n/a n/a Yes No 

Future poten>al 
extensions to aid data 
integra>on 

Yes Yes Yes Yes 

Main future 
extension(s) to aid data 
integra>on 

Space-filling designs 
Cue-based analyses 
Combined lines/point 
designs 
Enable downsampling 
Link with 
MRSea/MRSeaPower 

Link with 
dssd/dsims 
 

Link with 
dssd/dsims 

Enable exis>ng survey 
design upload 
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Fig. 2 Survey design, data collec>on and analysis workflow with the aim of integra>ng DAS and PAM data 

using the calibra>on method demonstrated in this case study.  
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Sec'on 3: Case Study - Es'ma'ng Harbour Porpoise Density in the Moray Firth  

Various datasets were considered for the case study, yet concurrently collected DAS and PAM data in 2010 

in the Moray Firth were the only data that met the project requirements to focus on (1) PAM and DAS data 

(2) with harbour porpoise as the target species (3) in Scotland. Therefore, this dataset became the focus of 

the project case study. The data were previously presented in both Thompson et al. (2013) and Williamson 

et al. (2016). 

 

Data overview and previous work 

Thompson et al. (2013) used an extensive deployment of 70 CPODs in 2010 to assess the response of 

harbour porpoise to seismic surveys, focussing on two 25 x 25 km study blocks in the Moray Firth. 

Williamson et al. (2016) then used the CPOD data to compare these PAM data with density es>mates 

derived from visual-aerial surveys, and compared the visual-aerial density es>mates with those derived 

from DAS data. The aerial surveys occurred between August and September 2010. Visual-aerial surveys 

were conducted on ten days during the Aug-Sept 2010 survey period, and the DAS surveys occurred on 

four days. The majority of CPODs were deployed between June and November 2010. The main details of 

the CPOD and DAS data are given in the Materials and Methods sec>on, though further details are given in 

Williamson et al. (2016). 

 

Williamson et al. (2016) compared typical CPOD data outputs e.g., detec>ons per minute, and other 

coarser >me resolu>ons, with the density es>mates from both sets of aerial data. The density es>mates 

produced from the DAS data in Williamson et al. (2016) were considered to be rela>ve es>mates as no 

es>mate of g(0) was available from the survey data to correct for availability bias, though a parameter 

from Hammond et al. (2013) was applied to the visual-aerial data. Therefore, the visual-aerial data were 

used to es>mate absolute abundance es>mates. Density surface modelling using GAMs in the R package 

dsm (Miller et al., 2022) was conducted using the visual- and the digital-aerial data separately. Candidate 

environmental variables used in spa>al modelling were depth, slope, sediment type (propor>on of 

sediment that was sand or gravelly sand) and distance from the coast. The comparison of the density 

surfaces yielded similar paMerns. Correla>on was also evident between the CPOD data and corresponding 

absolute densi>es from the visual-aerial data (Williamson et al., 2016). 

 

Materials and Methods 

As described in Williamson et al. (2016), the DAS data were collected by HiDef Aerial Surveying Ltd on 4 

days in Aug – Sept 2010 (28 Aug, 19 Sept, 26 Sept, 27 Sept) between 10:00 and 16:00 depending on the 
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surveyed day. On each day, a randomly selected route was chosen, along planned transect lines (Fig. 3). 

Flight height varied between 244 and 457 m depending on cloud height, resul>ng in a strip width between 

80 – 150 m. Detectability was assumed to be certain across the whole strip width. The effec>ve strip half 

widths of the surveys were therefore between 40 – 75 m. 

 
 

Fig. 3 Track lines flown during digital aerial surveys on four days in 2010. 

 

We used similar methods as applied in Jacobson et al. (2017), with the following workflow. 

Absolute density es>ma>on (DAS) 

• Es>mate a density surface using the DAS data. Jacobson et al. (2017) used Gauss-Markov smoothing to 

prevent over-smoothing and retain observed patchiness in harbour porpoise distribu>on. Here, MRSea 

was used, which fits spa>ally adap>ve GAMs, with targeted flexibility, to also preserve any patchiness 

in porpoise distribu>on. Any other appropriate spa>al modelling approach could be used at this stage. 

This analysis used processed data where the sigh>ngs were represented by the mid-point of a 4 x 4 km 

grid in the area. The same grid was also used as a predic>on grid.   
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• Ideally, a separate model would be fiMed to each DAS survey. However, the number of sigh>ngs from 

the first and second survey days were not sufficient to obtain density surfaces and both survey areas 

were not always surveyed on each separate day (Fig. 3). Therefore, one model was fiMed to data from 

all four surveys to produce an average density surface across the period of the DAS surveys. The 

analysis was performed with the MRSea package, using the number of sigh>ngs per 4 x 4 km grid cell 

from DAS as a response variable.  

• A set of one dimensional (water depth and slope) candidate smooth explanatory variables were 

associated with the centroid of each grid. A range of models was fiMed using both natural cubic and 

quadra>c B-splines for these univariate terms with the number of internal knots set between one and 

four. Addi>onally, a bivariate smooth of x and y coordinates (the centroid of each grid) was added to 

the model and implemented using a Gaussian radial basis func>on.  This spa>al smooth was 

parameterised with a minimum of 2 and maximum 15 knots.  For both the uni- and bi-variate splines 

knot number and loca>on was chosen using the spa>ally adap>ve local smoothing algorithm (SALSA) 

implemented in MRSea (Walker et al., 2010). 

• Models using both a quasi-Poisson and a Tweedie distribu>on framework were trialled and an offset 

for effort at each grid (in km2) was included. The assumed mean-variance rela>onship was assessed 

through diagnos>c plots to be best for the Tweedie distribu>on and so this was used for subsequent 

analysis.  

• Model selec>on for covariates and their flexibility (using SALSA) was conducted using Akaike’s 

Informa>on Criterion (AIC). 

• Model diagnos>cs included assessing residual correla>on and rela>onship between fiMed and observed 

residuals to ensure the assump>ons of the models were not violated and to assess model fit.  

• Uncertain>es (expressed as coefficient of varia>on, CV) around predic>ons at each grid cell were 

obtained using a parametric bootstrap (500 samples). This process resampled coefficients of the best 

fiYng model, made predic>ons using the resampled coefficients and calculated a standard devia>on 

for each grid cell.  

• The best fiYng model was used with a predic>on grid (also of size 4 x 4 km) to es>mate densi>es at 

each of the CPOD loca>ons. 

• Using an assumed value of g(0), all DAS-derived es>mates could be converted to absolute density 

es>mates for comparison to the PAM-derived es>mates. Data from Teilman et al. (2013) (see the PAM 

calibra>on sec>on below for more detail) was used to provide an es>mate of g(0). 
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PAM data prepara>on 

• The CPOD data were ini>ally processed by customised so_ware (CPOD.exe, vs 2.025) provided by 

Chelonia Ltd. Files (specifically .CP3 files) available to this project enabled further processing using 

so_ware version 2.048 to match the data inputs used in Jacobson et al. (2017). For each available 

CPOD, details of high confidence, narrow-band high frequency click trains detected in each minute of 

the data were extracted. Specifically, the start in microseconds within each minute and the dura>on of 

each click train were stored, as well as the amount of >me within a given minute that was lost due to 

data satura>on (a CPOD can only store so much data, and so cannot record more data in a given 

minute if that threshold is exceeded). These metrics enabled the number of seconds in each minute 

that contained porpoise click trains to be recorded, as well as a measure of recording effort for each 

minute.   

• The number of porpoise posi>ve seconds (PPS) from the PAM data, between 0600 and 1800 over the 

four days of data collec>on, were extracted. The calcula>on of PPS during daylight hours was so that 

the densi>es derived from the DAS data were linked to the same >me period for the CPOD data (as in 

Jacobson et al., 2017). 

 

PAM calibra>on 

• The rela>ve DAS densi>es, as well as the number of PPS from PAM were used as the data inputs for the 

integra>on analysis.  

• The Bayesian model was used to es>mate the following parameters D"1,3, g-(0) and vp2 following Eqn 6: 

o D"1,3 were the rela>ve DAS-derived densi>es and were included as highly informed priors, 

assuming a lognormal distribu>on. 

o g-(0) for the DAS data was included as an informed prior, assuming a beta distribu>on with shape 

parameters (47.6, 45.9) following data from Teilman et al. (2013) where the median es>mate of 

porpoise availability (>me spent at 0-2 m depth) was 0.58.  

o vp2 was to be es>mated by the model with a Uniform prior between 0 and 0.003 (based on results 

from Jacobson et al., 2017). 

o n1,3 were the number of PPS observed between 0600 and 1800 summed over 4 days.  

o T1,3 was included as the summed number of seconds surveyed by the CPODs over the 4 days. 

• Markov Chain Monte Carlo methods were used in the R-packages nimble (NIMBLE Development Team, 

2023) and runjags (Denwood, 2016) to fit and evaluate the model. Four chains of 250,000 itera>ons 

with a burn-in period of 200,000 itera>ons was used, with a thinning rate of 10. 
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• Using the es>mated vp2 values, density es>mates could be derived from the PAM data. Daily PPS counts 

from the 1st August to 1st October 2010 were extracted to create a >me series of daily absolute density 

es>mates. Variances of the daily density es>mates were es>mated using the Delta method to combine 

all sources of uncertainty. 

• Finally, a new absolute density surface was es>mated from the resul>ng density es>mates based on 

the PAM data. The same model fiYng, model selec>on and model predic>on approaches were used as 

for the spa>al modelling based on DAS data only. If more than one CPOD overlapped with a given grid 

cell, a mean value of the devices was used as an input to the modelling. The same covariates as the 

DAS-only model were fiMed to the resul>ng densi>es for one of the days when DAS was conducted (19 

September) and to a day outside that period (01 October) to show the u>lity of the calibra>on method. 

A quasi-Poisson distribu>on was assumed for the response variable as the response variable was not 

count (as in case of DAS-based modelling) but density. Bootstrapping was used as described above for 

the DAS spa>al models to es>mate spa>al modelling uncertainty around the generated density 

surfaces. Further bootstrapping rou>nes would be required to include addi>onal uncertainty from the 

vp es>ma>on. 

 

Results 

Es>ma>ng density using DAS 

Over the 4 days, a total of 2,155 km of completed DAS transect lines resulted in 97 observa>ons of 

individual harbour porpoises. Specifically, 17, 11, 41, and 28 observa>ons of individual porpoises were 

made on each of the separate survey days. The corresponding DAS-only absolute density es>mate was 

0.67 animals/km-2 (95% confidence interval: 0.53 – 0.86 animals/km-2). 

The best model fiMed to the DAS data used a Tweedie distribu>on and included coordinates, depth and 

slope as natural cubic splines. The mean DAS-derived density across the whole predic>on grid was 0.52 

animals/km-2. The DAS-derived densi>es assigned to the CPOD loca>ons ranged between 0 and 2.0 

animals/km-2, with a mean of 0.57 animals/km-2 (95% confidence interval: 0.43 – 0.95 animals/km-2) (Fig 4). 

These es>mates were comparable to those in Williamson et al. (2016).  

 

Es>ma>ng density using DAS and PAM 

CPOD data were available from 43 CPODs. Between 06:00 and 18:00, the mean number of PPS on the 

CPODs (summed across the four days of surveying) was 107, ranging between 0 and 613 PPS.  
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The model es>mated the median value of vp to be 0.0012 (95% credible interval: 0.00094 – 0.0015) (Fig. 

5). The es>mate of g(0) was very similar to the assumed prior distribu>on; the median value was es>mated 

to be 0.51 (95% credible interval: 0.42 – 0.61) (Fig. 6). 

Using the es>mates of vp and g(0), separate density es>mates could be derived for each day from 1st Aug – 

1st Oct 2010, including days where no DAS data were available. The median densi>es (averaged across all 

CPODs) for each day ranged between 0.24 and 0.83 animals/km-2 (Fig. 7). The daily surfaces fiMed using the 

calibrated PAM data showed differing daily paMerns (Fig. 8).    

 

 

 

Fig. 4: Es>mated rela>ve density surface using the DAS data (not corrected for g(0)).  The black dots denote 

CPOD loca>ons. 

 

  



29 

 

 
Fig. 5 Posterior distribu>on showing es>mated values of vp. 

 

Fig. 6 Posterior distribu>on showing es>mated values of g(0). 
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Fig. 7. A comparison of, to the le_ of the ver>cal dashed line, the DAS-derived density es>mates (the first 

es>mate is a mean design-based es>mate, the second es>mate is the mean density derived from the 

spa>al model across the whole predic>on grid and the third es>mate is the mean density derived from the 

spa>al model at the CPOD loca>ons only) and, to the right of the ver>cal dashed line, the PAM-derived 

density es>mates using the es>mated values of vp for all days between 1st Aug 2010 and 1st Oct 2010. 

Confidence intervals (95%) are also shown for all es>mates. 
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Fig. 8: Es>mated absolute density surfaces using the calibrated PAM data on two example days. 19/09/10 

(when there was a DAS) and 01/10/10 (when there was no DAS). 

 

Discussion 

The case study implemented a Bayesian data integra>on method based on the methods in Jacobson et al. 

(2017). By es>ma>ng a parameter combining detec>on probability of harbour porpoise clicks and 

probability of clicking (vp), as well as g(0), PAM data could be converted to absolute density at a daily 

resolu>on, including days when the DAS data were not being collected (Figs 7 and 8). All daily es>mates 

from the PAM data were on the same order of magnitude as the DAS-derived es>mates (Fig 7). The 

method also accounts for uncertainty propaga>on (where included in the model) allowing confidence 

intervals to be es>mated for all density es>mates. In this analysis, uncertainty in g(0) and the DAS-derived 

es>mates was included by incorpora>ng these inputs as informed priors in the model. 

A key aspect of this model is that the average es>mates for vp and g(0) are assumed to be constant both 

over the period considered and over space (albeit with uncertainty). This is especially important for using 

the parameter es>mates to es>mate densi>es from the PAM data; a decision must be taken about how 

reasonable it is to use the es>mates on days where there were no DAS surveys. The parameter of vp is a 

combina>on of CPOD EDA and the probability that a porpoise is vocally ac>ve in a 1-second >me period. 

Due to changes in oceanographic condi>ons, it is possible that the EDA of a CPOD will change under 

differing ambient noise condi>ons, which may change seasonally. Therefore, despite the CPODs being 

deployed for several months, densi>es were only es>mated between 01 Aug 10 and 01 Oct 10, given that 

the DAS surveys occurred in August and September, and assuming that condi>ons remained similar 

throughout this period. A next research step would be to alter the model to es>mate vp for individual 

CPODs as suggested by Jacobson et al. (2017), and poten>ally as a func>on of date to more accurately 

predict vp for other dates, though more calibra>on DAS flights would likely be needed.  

The average vocal behaviour of a porpoise is also assumed to remain constant over the survey >me being 

considered (in this case 01 Aug – 01 Oct 2010). We do note in this study that seismic survey ac>vity 

occurred during the data collec>on period and, if such ac>vity altered harbour porpoise vocal behaviour, 

then the es>mate of vp applied to days with seismic ac>vity could be biased. Therefore, it is important to 

consider how representa>ve the es>mated parameters are of the wider dataset, especially when deciding 

which PAM data to apply the parameters to. 
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We also limited the CPOD data to daylight hours, to beMer match the DAS survey data. This means that our 

es>mate of vp contains informa>on about porpoise vocal behaviour specifically in daylight hours. 

However, we could readily include all CPOD data across all hours each day; the only assump>on we would 

have to make is that the DAS-derived densi>es from daylight hours are applicable to hours of darkness as 

well. This may be reasonable to assume unless porpoises consistently migrated in or out of the survey area 

in hours of darkness. In that case, a more fine-scale study would be needed to understand poten>al diurnal 

changes in porpoise density and distribu>on, if such fine-scale changes needed to be understood for a 

given study (e.g., Williamson et al., 2022).  

This case study focused on harbour porpoise using CPODs and DAS surveys. However, there is no reason 

why the same framework could not be implemented for other cetacean species, using different PAM 

instrumenta>on and even aerial surveys using human observers. However, the method is likely to be more 

successful for some species than others. Cetaceans with seasonal vocal behaviour (such as some baleen 

whales) may not make enough calls at a daily scale to calibrate effec>vely (the variability may be too high), 

but it is likely that the method will work well for other echoloca>ng odontocetes, provided that the aerial 

surveys can provide robust es>mates for calibra>on. Therefore, the calibra>on method may be a challenge 

for deep-diving odontocete species such as beaked whales, where visual-based es>mates o_en have high 

uncertainty due to low sample sizes. Further, details of the method e.g., the specific acous>c unit of 

detec>on used for the PAM survey, will differ between species.   

Finally, there are other data integra>on methods available as reviewed in Sec>on 1. Therefore, a next 

research step would be to compare other reviewed methods with the calibra>on approach to assess the 

various strengths and limita>ons of the different methods. This would be an important step before 

recommending a standard approach to data integra>on.  

Relevant code and data used for the case study are available on GitHub.  

  

https://github.com/dvharris/PAMaerial
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Sec'on 4: Survey design recommenda'ons 

The discussions within the final technical mee>ng covered various aspects of survey design for both DAS 

and PAM surveys but ul>mately considered those that would enable data integra>on for es>ma>on of 

absolute abundance using PAM. The main discussion points are summarised below. Many discussion points 

relate to both DAS and PAM surveys, though points specific to DAS or PAM are highlighted. 

 

Goals of a survey 

Firstly, it is important to define the aims of any survey because the ul>mate project goal will determine the 

survey design required. For example, a PAM survey designed to es>mate absolute density or abundance 

from PAM data alone will need to consider detec>on probability es>ma>on (and cue produc>on 

informa>on). In PAM surveys, this will o_en lead to a specific instrument configura>on and will likely 

require more instrumenta>on overall (to create instrument arrays for animal localisa>on, for example). 

More complex data processing will also be required to es>mate detec>on probability from PAM data. 

Further, if a survey is designed to detect a response to some disturbance, then par>cular designs e.g., 

gradient designs (as used in Thompson et al., 2013) may be required. In this project, the role of the PAM 

data was to supplement the absolute density es>mates from the DAS data by providing data at a finer 

temporal resolu>on. Therefore, detec>on probability es>ma>on and cue produc>on informa>on from the 

PAM data was not required (though see below for an extended discussion about detec>on probability 

es>ma>on). 

 

Survey effort 

Sufficient replica>on of transect lines/points and obtaining uniform survey coverage are two important 

components of survey design (e.g., Buckland et al., 2001). Guidance is given in Buckland et al. (2001; 2015) 

regarding the number of lines/points required to achieve a desired level of variance (a minimum of 10 – 20 

lines or points should be considered for an individual line- or point-transect survey). Tools such as dssd and 

dsims can also be used to design surveys for both line (for DAS surveys) and point (for sta>onary PAM 

surveys) transects. They can help to assess a number of design op>ons, for example, whether the number 

of lines/points will achieve a reliable es>mate of the encounter rate variance, whether the coverage 

probability within the survey area is uniform or whether stra>fica>on can help achieve more precise 

es>mates. Using such tools as part of any survey design exercise is recommended. An example for one of 

the surveyed areas in the case study is presented in Appendix 1. 
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A further step would be to conduct a power analysis to inves>gate whether the survey design in ques>on 

has enough power to detect changes in density/abundance (if that is the goal of a given project) using tools 

such as MRSeaPower or AVADECAF.  

 

Required parameters for density/abundance es>ma>on 

There are several required parameters for absolute density/abundance es>ma>on. These parameters will 

fundamentally affect precision and accuracy in density and abundance analyses. Therefore, it is 

recommended that studies aMempt to es>mate these parameters where prac>cal, rather than relying on 

literature values, which may introduce bias due to geographical and temporal variability. More detailed 

comments on specific parameters are given below. 

 

Detec>on probability:  it is generally assumed that a digital aerial planorm detects all animals available for 

detec>on within the surveyed strip but this may not always be the case. Detectability can be es>mated for 

DAS data (likely using distance sampling) and this is an ac>ve area of research. Regarding PAM data, there 

are several ways to es>mate detec>on probability (Marques et al., 2013) though, as discussed above, this 

has implica>ons for survey design. In this project, a method is demonstrated that does not require 

detec>on probability to be directly es>mated from the CPOD data, though prior informa>on about 

detec>on probability could be included in the Bayesian model, if known. Further work via simula>on is 

required to ascertain how the inclusion of detec>on probability as an informed prior would affect the 

precision and accuracy of the es>mated parameters. 

 

Group size: group size informa>on from the DAS data might lead to insights about demography of the 

target species but is also linked to es>ma>ng availability (see next discussion point). Therefore, extrac>ng 

group size informa>on from DAS data could be useful. 

 

Availability: es>ma>on of availability parameters of relevance to DAS data is an ac>ve research topic. 

While instantaneous availability es>mates are available for harbour porpoise from dive tag data (Teilmann 

et al. 2013), their applica>on has limita>ons (e.g. unvalidated assump>ons regarding animal visibility at 

depth), and efforts are underway to address these. Work is also ongoing by HiDef to generate es>mates of 

availability based on a tandem aircra_ approach.  

 

Cue produc>on rate (or similar vocal behaviour-linked parameters): again, this is an ac>ve area of research 

(for example ACCCURATE project, University of St Andrews). Similar to detec>on probability, a future 

https://accurate.st-andrews.ac.uk/
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research step would be to assess how the inclusion of prior informa>on about the cue produc>on rate of 

the target species affects the precision and accuracy of the es>mated parameters. 

 

Considera>ons specific to combining DAS and PAM data 

It is important to note that by combining DAS and PAM data in this project, there was no requirement to 

es>mate absolute density directly from the PAM data. Therefore, the survey design principles outlined 

above may not be strictly required for a combined DAS-PAM survey of this nature. So, while a conserva>ve 

approach to the PAM survey design should start using the guidance referenced above (e.g., Buckland, 

2001; 2015) about number of instruments, it is possible that some of the survey design principles can be 

relaxed when the PAM data only support the DAS data. However, this would require a dedicated down-

sampling analysis, where instruments are removed in a simula>on analysis to assess how many are 

required to s>ll achieve the scien>fic objec>ves. This would be a natural next research step for this topic 

and similar exercises have been undertaken for other data integra>on methods (e.g., Schliep et al., 2023).  

Given the need to es>mate absolute density from the DAS data then, when using the calibra>on method, 

efforts must be made to collect the most robust DAS data including data required for addi>onal 

parameters as discussed above. Further, another next step would be to use simula>on studies to assess 

how many DAS surveys would be required to adequately calibrate the PAM data i.e., how many flights, and 

at what intervals, are required to avoid bias and maintain an acceptable level of uncertainty in the 

calibrated PAM data. 
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Project Conclusions and Future Research Direc'ons 

This project addressed three main goals:  

1. Produce a modelling framework integra>ng DAS data and PAM data, including the ability to 

incorporate seasonal and diurnal uncertainty. 

2. Produce a test case study on harbour porpoise to validate the methods, producing density maps 

for a specified site in Scotland. 

3. Provide recommenda>ons on standards for sta>c PAM and DAS data collec>on. 

The first two goals were addressed through the review of available data integra>on methods and selec>ng 

a method for implementa>on in a case study. A calibra>on method was chosen and applied to a combined 

DAS and PAM dataset collected in the Moray Firth in 2010. By integra>ng DAS and PAM data, the different 

strengths of the data – the broader spa>al coverage of aerial surveys and the long-dura>on, con>nuous 

monitoring of PAM surveys – were combined. The immediate benefit of combining the data was the 

conversion of the >meseries of PAM data into es>mated absolute densi>es with associated uncertainty, 

including days when the DAS surveys were not opera>ng. This may make it possible to inves>gate animal 

densi>es at a finer temporal resolu>on than with DAS data alone. In the case study, density surfaces were 

also es>mated from the calibrated PAM data, showing spa>al changes in absolute density. It is also 

poten>ally possible to apply this method to data already collected (as was demonstrated in the case 

study), assuming that an es>mate of absolute abundance can be es>mated from one of the survey 

planorms.  

The key assump>on is, however, that the parameters es>mated from the combined DAS and PAM data are 

representa>ve across the >me period analysed. For example, in the case study, the DAS surveys were 

conducted on two dates in August 2010 and two dates in September 2010. It is therefore assumed that the 

corresponding es>mated parameter, vp, combining the average effec>ve detec>on area of the CPODs and 

the average probability of an animal clicking in a 1-second >me period on those four days is representa>ve 

of vp throughout all dates in August and September 2010. Further, the applica>on of the combined 

parameter vp across the daily PAM dataset assumes that the average value of vp is constant across the 

>me period being analysed and does not change from one day to the next. If this assump>on is not true, 

then individual daily PAM es>mates could be biased. Two next research steps would be to (1) assess 

through simula>on studies how unaddressed variability in vp would impact the bias and precision of 

resul>ng abundance es>mates and (2) compare the calibra>on approach with different data integra>on 
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approaches (three broad categories were iden>fied in the methods review) to beMer understand the 

advantages and disadvantages of the various methods.  

Regarding the final goal, survey design considera>ons and recommenda>ons were outlined for both DAS 

and PAM data separately, before considering survey design specifically for an integrated survey. The 

so_ware review also highlighted that tools already exist to (1) aid DAS and PAM survey design and (2) 

assess the power of survey designs to detect change in trends in abundance and/or density (for both DAS 

and PAM surveys). These discussions led to iden>fying two further research steps: (1) there is a need to 

inves>gate how a dedicated integrated survey design would differ from the recommenda>ons for 

individual DAS and PAM surveys, specifically regarding the number of PAM instruments and DAS flights 

required and (2) there is a need for a so_ware tool to design a combined DAS and PAM survey, which could 

be an extension of exis>ng tools.    

Current survey design recommenda>ons are to: 

• Clearly iden>fy the goals of a survey to ensure that the survey design will meet the needs of the 

survey goals. Goals may need to be priori>sed where there are several compe>ng goals and/or 

target species. 

• Follow exis>ng guidance for line and point placement for separate DAS and PAM surveys, though 

more research is needed to understand survey design requirements for an integrated survey. 

• Use exis>ng tools where possible to aid survey design, including assessing the power of the survey 

to detect changes in density and abundance. More so_ware tool development is required 

specifically for integrated surveys. 

In summary, data integra>on of DAS and PAM data is possible, providing a >me series of absolute 

abundance es>mates (with associated assump>ons) that would not be possible using DAS data alone. 

Therefore, a further recommenda>on is to: 

• Consider the benefits of collecting data from more than one type of surveying platform. Different 

platform types offer different advantages; in this study combining DAS and PAM data led to a time 

series of estimated absolute densities that would not have been practically possible from one 

platform alone. More research is required, however, to determine how many DAS flights are 

required, and at what intervals, to optimally calibrate the PAM data. 

The demonstrated calibra>on method is flexible and so could be considered for use with other species and 

other surveying planorms (such as DAS using s>ll images, ship-based surveys or autonomous vehicles). 
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However, there are likely to be specific considera>ons for each type of surveying planorm, which may 

require adjustments to the data integra>on method. Ul>mately, data integra>on from several surveying 

planorms has the poten>al to impact survey design and data collec>on recommenda>ons, which in turn 

may influence required survey effort and, therefore, survey costs. 

Future Research Direc>ons 

Each stage of the project highlighted future research steps, as summarised here. 

• The so_ware review highlighted that there is a need for a so_ware tool to design a combined DAS 

and PAM survey, which could be an extension of exis>ng tools.  

• Several extensions to the case study analysis would be beneficial: 

o Explore variability in the vp parameter as a func>on of space and >me. 

o Assess via simula>on how unaddressed variability in vp would impact the bias and precision 

of resul>ng abundance es>mates. 

o Compare other reviewed methods with the calibra>on approach to assess the various 

strengths and limita>ons of the different methods.  

o Further work via simula>on is required to ascertain how the inclusion of acous>c detec>on 

probability and cue produc>on rates as informed priors, if available, would affect the 

precision and accuracy of the es>mated parameters. 

o Survey design considera>ons could be tested via simula>on (based on the case study data) 

by (1) performing a down-sampling analysis to assess how many PAM instruments are 

required to avoid bias and achieve a suitable level of uncertainty in the resul>ng abundance 

es>mates and (2) assess how many DAS surveys would be required to adequately calibrate 

the PAM data. 

• Con>nued research into es>ma>ng (1) detec>on probability and (2) availability parameters for DAS 

data is important, given the need to es>mate absolute density from the DAS data when using the 

calibra>on method. In addi>on, extrac>ng group size informa>on from DAS data might also be 

useful as it is linked to detec>on and availability parameters. 
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Appendix 1 - Survey design and simula'on using dsims 

This exercise used dsims to design (1) a line transect survey and (2) a point transect survey for one of the 

25 km x 25km monitoring areas from the case study (Fig. A1). In each case, the design was created using 

guidance from Buckland et al. (2001) regarding the number of recommended lines and points i.e., between 

10 and 20. The coverage of the designs was then assessed using the simula>on capabili>es in dsims. 

 
Fig. A1 The two main monitored areas from the case study. The design exercise was completed for one of 

the areas as a demonstra>on of the dsims package capability. 

Methods 

The line transect design assumed a spacing of 1,500 m and generated systema>cally-placed parallel lines 

with a random start point, which resulted in a design with 16 transect lines across the area. Line strip width 

was assumed to be 100 m. Coverage was assessed by genera>ng 100 examples of the survey design and 

then using 1,000 grid points overlaid onto the survey area to quan>fy the number of >mes each point was 

covered by a survey (genera>ng a coverage score per grid point). The point transect analysis assumed 20 
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monitoring points arranged in a systema>c grid with a random start point. A monitoring radius of 100 m 

was also assumed. Coverage was assessed in the same way as the line transect survey.   

 

 

 

Fig. A2 A line transect design from one of the case study monitored areas.  
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Fig. A3 A point transect design from one of the case study monitored areas.  

 

Results 

The resul>ng designs are shown in Figs A2 and A3. The coverage assessment resulted in a mean coverage 

of 13.3% for the line transect design, with individual coverage scores ranging between 0.09 and 0.2. 

Coverage was much lower for the point transect design with only 0.1% of the survey area being monitored. 

Corresponding coverage scores were also very low; the majority of points did not have any coverage across 

the 100 replicates of the design and the remaining coverage scores ranged between 0.01 and 0.02.  

 

Conclusions  

The results of the simulated analyses demonstrated the differences between the coverage of the line 

transect survey compared to the point transect survey. This is not surprising as CPODs (on which this 

simula>on was based) typically have small detec>on ranges (and associated detec>on probability). This is 

an important considera>on for survey design because the encounter rate variance can be affected by small 

sample sizes, which may result from very low coverage. dsims provides the opportunity to (1) design both 
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line and point transect surveys and (2) assess their coverage. Further, dsims can be used to (3) simulate 

distance sampling analyses to assess many other aspects of the survey design (not demonstrated here) 

including encounter rate variance and bias in resul>ng abundance/density es>mates. Therefore, dsims is a 

useful survey design tool, with several poten>al future extensions (see Sec>on 2) being par>cularly 

relevant for integrated data analyses including (but not limited to) PAM and DAS data.  
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