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A B S T R A C T

Underwater passive acoustics is used worldwide for multi-year monitoring of marine mammals. Yet, the large 
amount of audio recordings raises the need to automate the detection of acoustic events. For instance, the 
increasing number of Offshore Wind Farms (OWF) raises key environmental and societal issues relating to their 
impacts on wildlife. In this context, monitoring marine mammals along with information on their acoustic 
environment throughout the OWF life cycle is crucial. The objective of this study is to evaluate the ability of a 
single deep learning model to precisely detect and localize, in time and in frequency, the marine mammal sounds 
over a wide frequency range and classify them by species and sound types.

A broadband hydrophone, deployed at the Fécamp OWF (Normandy, France), recorded the underwater 
soundscape including sounds from marine mammals occurring in the area. To visualize these sounds, 15-s 
spectrograms were computed. From these images, dolphin (D) and porpoise (P) sounds were manually anno
tated, including different types of sounds: Click-Trains (DCT, PCT), Buzzes (DB, PB) and Whistles (DW). The 
spectrograms were then split into five-fold cross-validation datasets, each containing one half of manual anno
tations and one half of only background noise. A Faster R-CNN model was trained to precisely detect and classify 
the marine mammal sounds in the spectrograms.

Three model output configurations were used: (1) overall detection of marine mammals (presence vs. 
absence), (2) detection and classification of species (two classes: dolphin, porpoise) and (3) sound types (five 
classes: DCT, DB, DW, PCT, PB). For the simplest configuration (1) 15.4 % of the spectrogram dataset had detections 
while missing only 6.6 % of annotated spectrograms. For the more precise configurations, (2) and (3), the mean 
Average Precision (mAP) achieved were 92.3 % (2) and 84.3 % (3), and the macro average Area under the curve 
(AUC) 95.7 % (2) and 94.9 % (3).

This model will help to speed up the annotation processes, by reducing the spectrogram quantity to be 
manually analyzed and having time-frequency boxes already drawn. Several model parameters can be adjusted 
to trade off missed detections and false positives which need to be carefully considered and adapted to the 
problem. For instance, these adjustments would be particularly relevant depending on the human resources 
available to manually check the model detections and the criticality of missing marine mammal sounds. These 
models are promising, ranging from the simple detection of marine mammal presence to precise ecological in
ferences over the long term.

1. Introduction

The modification of marine habitats resulting from offshore human 
activities raises key environmental issues relating to their impact on 
wildlife. Marine megafauna species, such as marine mammals, are 
influenced by anthropogenic activities, in their distribution, abundance 

and behavior in relation to potential direct effects – including mortal
ities, injuries caused by fisheries bycatch, collisions with ships, pollut
ants - but also a large array of underlying ecological effects - including 
loss of habitat, acoustic disturbances, changes in prey distribution and 
availability - which can ultimately affect population dynamics. For 
instance, the development of offshore wind farms generates effects and 

* Corresponding author.
E-mail address: karine.heerah@france-energies-marines.org (K. Heerah). 

Contents lists available at ScienceDirect

Ecological Informatics

journal homepage: www.elsevier.com/locate/ecolinf

https://doi.org/10.1016/j.ecoinf.2024.102906
Received 16 January 2024; Received in revised form 17 October 2024; Accepted 18 November 2024  

Ecological Informatics 84 (2024) 102906 

Available online 22 November 2024 
1574-9541/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 
nc-nd/4.0/ ). 

mailto:karine.heerah@france-energies-marines.org
www.sciencedirect.com/science/journal/15749541
https://www.elsevier.com/locate/ecolinf
https://doi.org/10.1016/j.ecoinf.2024.102906
https://doi.org/10.1016/j.ecoinf.2024.102906
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


raises concerns about potential impacts on the environment, which need 
to be assessed. The construction or operation of an offshore wind farm (i. 
e., activity) increases ambient noise (i.e., effect) which could, for marine 
mammals (i.e., ecological receptor), mask biological communication 
signals, such as the echolocation used to locate and forage (i.e., impact). 
These effects and impacts need to be identified and quantified through 
comprehensive and long-term monitoring as required by the Marine 
Strategy Framework Directive (MSFD) to ensure the good ecological 
status of European waters. Marine mammals are at the heart of concerns 
considering their environmental importance. These species represent 
the high end of food webs and play key roles in ecosystem functioning 
(Mariano-Jelicich et al., 2021). Their ecologies and distributions inte
grate spatiotemporal variations of their food resources. Thus, such 
species are generally considered as ecological indicators of ecosystem 
health (Hazen et al., 2019).

While long-term monitoring of marine mammals is crucial to capture 
the drivers of potential changes in population dynamics, it remains 
particularly challenging to observe them as they live in the open ocean, 
where they can cover large distances and spend most of their time un
derwater. Several methods have been developed to study their distri
bution at sea (Frasier et al., 2021; Hammond et al., 2021), habitat use 
(Lambert et al., 2017; Virgili et al., 2017), foraging habits (Bowen and 
Iverson, 2013) and behavior at sea (Todd et al., 2020). Each method has 
its advantages and drawbacks. For instance, studies on the distribution 
and abundance of marine megafauna species are traditionally based on 
direct observation data obtained from aerial and/or ship-based surveys 
(Hammond et al., 2021; Waggitt et al., 2019). While these methods offer 
the opportunity to sample large areas, they only provide a short-term 
snapshot of the ecological scene and thus, do not fully integrate the 
temporal variability in species abundance and distribution (Virgili et al., 
2018), driven either by natural environmental variability and/or by 
human activities. Biologging of marine mammals equipped with 
movement recording tags allows for mid/long term monitoring of in
dividuals at large spatial and temporal scales. While biologging methods 
offer invaluable information on the movements and behavior of tagged 
individuals, their efficiency to accurately characterize species ecology is 
drastically dependent on sample sizes (Sequeira et al., 2019). Under
water, passive acoustic monitoring from a fixed point (i.e., restricted 
spatial scale) is another approach used to study marine mammals 
(Mellinger et al., 2007). It is classically used for mid− /long-term 
monitoring of species emitting an acoustic signal (Gervaise et al., 2021; 
Mellinger et al., 2007; Nowacek et al., 2016), used to locate, forage and/ 
or interact with each other. Each species possesses specific acoustic 
signatures and a specific vocal repertoire associated with different ac
tivities. As such, passive acoustic monitoring can be used to identify the 
presence of a given species in an area and to characterize its behavior. 
Moreover, this solution is able to characterize the environment by 
measuring the ambient noise.

The analysis of long-term acoustic recordings can be performed 
manually by labelling sound events. Advances in technologies, including 
energy and storage capacities, mean that acoustic data can be collected 
over longer durations with higher frequency sampling (up to more than 
300 kHz). However, these represent large and complex datasets, 
rendering manual analyses time-consuming. To address this challenge 
and achieve cost-effective processing, alternative methods have 
emerged. From acoustic signal processing to artificial intelligence, these 
methods have proved their effectiveness over the last decades in auto
matically analyzing large amounts of audio data for acoustic environ
ment monitoring (Morgan and Braasch, 2021; Towsey et al., 2014). 
More specifically for underwater bioacoustics, solutions based on signal 
processing such as the C-pod and F-pod detectors (Todd et al., 2023) or 
the Pamguard software (Gillespie et al., 2009) are used in particular to 
detect marine mammal clicks. However, these algorithms have shown a 
certain sensitivity to background noise (Clausen et al., 2019) and a lack 
of diversity in the sound types and species detected and classified. More 
recently, the use of artificial intelligence (machine learning, and 

especially deep learning), has demonstrated its efficiency across various 
domains, including image and speech processing (LeCun et al., 2015; 
Shinde and Shah, 2018). With the significant breakthrough of deep 
learning, the automation of monitoring processes in bioacoustics has 
become a realistic objective (Goodwin et al., 2022; Parsons et al., 2022). 
Indeed, deep learning has proven essential in making the wealth of 
available data beneficial for learning how to extract relevant features 
from the sensed information (Heaton et al., 2018). Within the context of 
marine fauna monitoring, deep learning has been adopted to tackle 
various tasks including the automatic identification of fishes from 
echosounding data (Brautaset et al., 2020), the classification of marine 
mammal sounds from passive acoustic recordings (Mutanu et al., 2022; 
Shiu et al., 2020), and automatic object recognition and tracking in 
underwater videos (Beyan and Browman, 2020; Malde et al., 2020).

In recent reviews, Mutanu et al. (2022) and Stowell (2022) discussed 
the current state-of-the-art methods employed for detection and classi
fication in the field of bioacoustics. Typically, detection in bioacoustics 
involves a binary classification of spectrograms generated from acoustic 
signals to determine the presence or absence of target sounds. Subse
quently, a more detailed classification task is applied to positive spec
trograms, involving multiple classes (i.e., one label is affected per 
spectrogram) and, in some cases, multiple labels (i.e. multiple labels can 
be affected per spectrogram). Traditional machine learning approaches, 
such as Support Vector Machines (SVM), Bayesian Hidden Markov and 
Random Forest can be trained with relatively small datasets. However, 
due to their limited use in only a few studies, their capabilities cannot be 
assessed in a wider range of scenarios (Mutanu et al., 2022). On the 
other hand, deep learning models, particularly Convolutional Neural 
Networks (CNNs) have emerged as the predominant algorithms for 
acoustic classification, mainly due to their ability to offer superior per
formance when dealing with raw data or spectrograms (Shiu et al., 2020; 
Stowell, 2022). Nevertheless, they necessitate a substantial amount of 
labeled acoustic data for effective training. For detection tasks, recent 
deep learning-based methods have introduced a new dimension to the 
field, allowing for precise localization and classification of sound events 
in time and in frequency. Popular object detection models, such as Faster 
R-CNN or YOLO architectures, have already been applied in wireless 
signal detection (Prasad et al., 2020) and temporal localization of sound 
events (Pham et al., 2018). Specifically, bioacoustics studies have used 
these models to detect single-class vocalizations (Coffey et al., 2019; 
Ferguson et al., 2022; Romero Mujalli et al., 2021) and multispecies or 
multitype sounds in a low frequency range (Escobar-Amado et al., 2024, 
Wu et al., 2021). Such approaches are particularly useful in scenarios 
where occurrences of sounds are overlapping or when different sound 
classes are present. Despite being demanding in the annotation process, 
this is a promising method to precisely detect and localize (in time and in 
frequency) several marine mammal species and the different sound 
types of their broadband vocal repertoire using a single deep learning 
model.

In this study, we exploited the Faster R-CNN model to detect five 
sound types of two marine mammal species in broadband underwater 
audio recorded in an OWF: dolphin click-train, buzz and whistle, and 
porpoise click-train and buzz. The precise localization (in time and in 
frequency) and classification of these sounds in the spectrograms 
enabled us to aggregate the detections at the spectrogram scale and 
evaluate our model at several precision levels: marine mammal (pres
ence/absence), species (dolphin/porpoise) and sound type (dolphin 
click-train, buzz and whistle, and porpoise click-train and buzz). 
Furthermore, our study has confirmed the model’s ability to expedite the 
annotation process compared to a manual annotation, while effectively 
detecting sparse marine mammal sounds. This was achieved by mini
mizing the number of spectrograms requiring manual analysis and 
providing pre-drawn time-frequency boxes.

The remainder of the paper is organized as follows. Section 2 first 
describes the data collection and processing, as well as the dataset 
preparation. Then, details about the selection, configuration and 
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evaluation of our deep learning model are presented. Section 3 provides 
the experimental results including the analysis of the trade-off between 
false positives and missed detections, the performance of the three 
classification levels and the results on the generalization dataset. Next, 
Section 4 provides further discussions with an assessment of the model’s 
performance and relevance in the context of marine mammal moni
toring. In addition, potential future directions for research and devel
opment are described, focusing on strategies to improve input data and 
the integration of information from various sensors to enhance moni
toring capabilities. Finally, we conclude the paper in Section 5.

2. Material and methods

2.1. Data collection

Underwater acoustic data were recorded at the Fécamp (Normandy, 
France) offshore wind farm (OWF) with instruments deployed at the 
south-east end of the OWF (49◦51.3759′N, 0◦14.2259′E) (Fig. 1). In this 

area of the English Channel, permanent species include dolphins (Bot
tlenose dolphin (Tursiops truncates), Common dolphin (Delphinus del
phis), White-beaked dolphin (Lagenorhyncus albirostris)), porpoises 
(Harbor porpoise (Phocoena Phocoena)) and seals (Gray seal (Halichoerus 
grypus), Harbor seal (Phoca vitulina)). Other species can occur in this area 
but are considered rare. Very few seal sounds were present in the re
cordings, therefore this study focused on sounds from dolphins and 
porpoises. Dolphins emit whistles (frequency modulation around 1–40 
kHz) and broadband clicks and buzzes (pulses up to 150 kHz) (Jones 
et al., 2019). Porpoises only emit clicks and buzzes (pulses around 
100–150 kHz) (Verboom and Kastelein, 1995). Each sound type can be 
associated with a behavior as dolphins and porpoises use click-trains and 
buzzes mainly to echolocate and feed, respectively. In addition, dolphins 
use whistles to communicate (Dudzinski et al., 2009).

To record the sounds emitted by these species, the instrumentation 
included a broadband hydrophone (HTI-99, Sensitivity: − 164 dB) and a 
recorder able to record the soundscape up to 156 kHz (Rtsys – EA-SD14, 
Fs: 312.5 kHz, Bit depth: 24 bits, Bandwidth: 3 Hz-150 kHz, Gain: 14.7 

Fig. 1. Location of the Fécamp OWF and instrumentation.
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dB, VADC=VPP/2 = 2.5 V). To save energy and storage space, recording 
occurred 50 % of the time on a duty cycle of 5 min on/5 min off. The 
instrumentation was attached to a mooring line consisting of a station
ary chain (on the seabed), a tidal chain (in the water column) and a buoy 
(at the surface). The hydrophone was placed along the stationary chain a 
few meters above the seabed (bathymetry of around 30 m depth). The 
marine mammal sounds could be detected if the instrumentation is less 
than a few hundred meters or a few kilometers from the sound source 
(depending on the ambient noise level and the type of signal and its 
characteristics: orientation, amplitude) (Nuuttila et al., 2013; Nuuttila 
et al., 2018; Quintana-Rizzo et al., 2006).

Two sound recording datasets were available. Both were recorded 
before the beginning of the construction works of the OWF: one in 
November/December 2020, hereafter referred to as Dataset 1 (305 h, 
961 Go) and, one in January/February 2020, hereafter referred to as 
Dataset 2 (288 h, 905 Go). Dataset 1 was manually annotated (§2.2 Data 
processing) and used for training and validation of the object detection 
model. For Dataset 2, five consecutive days were manually annotated 

and used to assess the generalization of model performances.

2.2. Data processing and dataset preparation

Fig. 2 provides an overview of the workflow for data processing, 
model training and evaluation.

2.2.1. Sound processing
Firstly, from the raw acoustic data (.wav files), sounds were trans

formed into 15-s-long spectrograms to visualize their frequency com
ponents and thus marine mammal vocalizations. Two different sets of 
resolution and frequency intervals were used to compute the spectro
grams, resulting in: (i) one broadband spectrogram (0–156 kHz; reso
lution: 8.3 ms, 305.2 Hz) and; (ii) one low frequency spectrogram (0–25 
kHz; resolution: 8.3 ms, 48.8 Hz) to focus on low frequency vocaliza
tions, such as dolphin whistles (FFT size: 2048, window size: 2048 (1024 
for low frequency spectrogram), overlap: 50 % (70 % for low frequency 
spectrogram), type: power spectrum density). Secondly, each 

Fig. 2. Workflow of the marine mammal sound detection and classification model. Icons from www.flaticon.com, Faster R-CNN architecture from (Honda, 2020).
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spectrogram matrix was converted into an image to reduce spectrogram 
size (color value range: 0–120 dB, color: viridis, image size (width, 
height): 1813, 512), allowing faster model training. Examples of spec
trograms are shown in Fig. 3. Spectrograms and images were generated 
using the open source OSmOSE python package (https://github.com/ 
Project-OSmOSE/osmose-toolkit).

2.2.2. Annotation
The entire datasets 1 and 2 were manually annotated by an expert 

using the temporal and spectrogram visualizations of the Raven Pro 1.6 
software in order to identify marine mammal sounds in the recordings. 
The resulting time-frequency boxes drawn around the sounds of interest 
were then transferred to our 15-s spectrograms generated with the 
OSmOSE pyhton package to obtain standardized spectrograms. Each box 
was annotated with one of these labels: dolphin click-train, dolphin 

buzz, dolphin whistle, porpoise click-train and porpoise buzz. In Dataset 
1, 4288 sounds were annotated, including: 2599 dolphin sounds (2028 
click-trains, 254 buzzes and 317 whistles) and 1689 porpoise sounds 
(1613 click-trains and 76 buzzes). Buzzes and whistles were the least 
represented in the dataset, especially porpoise buzzes. Out of 305 h of 
sound recordings, annotations represented around 105 min (0.6 % of the 
time). In terms of 15-s spectrograms, 1959 segments included annota
tion(s) out of 75864 segments. Each annotation was associated with a 
certainty level, ranging from low (1) to high (3). For a high certainty 
level, there was no doubt about the origin of the signal. For a medium 
certainty level, it was not possible to determine its origin with certainty. 
Finally, for a low certainty level, the signal resembled a signal of interest 
but did not appear to be emitted by a biological source. The average 
certainty level of all annotations was 2.67 (SD: 0.54).

In Dataset 2415 sounds were annotated, including: 137 dolphin 

Fig. 3. Examples of annotations and detections (spectrogram parameters detailed in 2.2.1). 
A) Detections matching annotations. 
B) Detections matching annotations, however some annotations are comprised in one detection. With the common metric for object detection (AP50), these an
notations would have been considered as missed detections. Using our customized metrics at the 15-s scale, these detections are considered correct. One annotation of 
porpoise click-train and one of buzz are missed due to the low signal-to-noise ratio. At the 15-s scale, the missed detections are not considered due to the good 
detections of the other porpoise click-trains and buzz. 
C) Good detections of dolphin whistles. As in B), three whistle annotations are comprised in one detection. 
D) No signal to detect and no false detections despite the high background noise. 
E) Two good detections and one missed detection of porpoise click-trains, due to the low signal-to-noise ratio. And one false detection of a dolphin click-train, due to 
impulsive noise similar to dolphin clicks. 
F) False positives probably due to acoustic deterrent devices similar to dolphin and porpoise buzzes. 
The annotations are in solid lines and detections in dashed lines. To each detection the model attributes a confidence score.
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click-trains and 278 porpoise click-trains. No buzzes or whistles were 
found in these recordings. Annotations represented 9 min of sound 
recording out of 61 h (0.3 % of the time). The average certainty level of 
all annotations was 2.16 (SD: 0.87).

2.2.3. Dataset preparation
From Dataset 1, training and validation datasets were built to train 

and validate the deep learning model, respectively. Both datasets were 
composed of 15-s spectrograms, 50 % of them with annotations (time- 
frequency boxes) and 50 % without annotations (these datasets will be 
referred to as annotated and background spectrograms respectively in 
the following). Although the deep learning model could have been 
trained without background spectrograms (including any type of sounds 
different from the target sounds), preliminary numerical experiments 
showed that adding background spectrograms made it more robust to 
false detections. Out of the 147810 spectrograms available in the data
set, 1959 background spectrograms were selected randomly. All the 
annotated spectrograms were included in these training and validation 
datasets. Moreover, to evaluate the performance statistics of the deep 
learning model and its generalization to different datasets, the data were 
prepared for a five-fold cross validation. The dataset was split randomly 
into five folds allowing the model to be trained and validated five times, 
with 80 % of training data and 20 % of validation data (Fig. 1–2.1 and 
Table A.1).

For Dataset 2, all spectrograms from the five consecutive annotated 

days were used to assess the generalization of model performances.

2.3. Deep learning model

2.3.1. Model selection and setup
The aim of this study was to investigate and assess the ability of a 

single deep learning model to precisely detect (in time and in frequency) 
and classify marine mammal sounds over a wide frequency range. In the 
literature, several object detection models exist and could be employed 
(Zou et al., 2023). Here, the Faster R-CNN model equipped with the 
Feature Pyramid Network (FPN) was adopted, taking advantage of the 
multi-scale features to yield better detection performance (Lin et al., 
2017). This two-stage detector has been proven to provide better 
detection performance than single-stage detection models which focus 
more on the prediction speed (Beyan and Browman, 2020). Indeed, 
Faster R-CNN + FPN has been one of the most widely used models in 
various application domains (Zou et al., 2023). The Pytorch imple
mentation from Detectron2 (Wu et al., 2019) version 0.6, developed by 
Facebook AI Research, was used. The model can be adjusted by many 
hyper-parameters in its different components. In this study, most of 
them remained unchanged and were set using their default values. The 
input image (original size of 512 × 1813) was resized to (377 × 1333) 
(default max length = 1333). The ResNet50 architecture with ImageNet 
pretrained weights was adopted as a backbone.

For model training, the following parameters were configured: batch 

Fig. 3. (continued).
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size of 16, learning rate of 10− 4, approximately 50 epochs (equivalent to 
10000 iterations), and stochastic gradient descent (SGD) optimizer. 
During the training process, using the input data (2.2.3 Dataset prepa
ration) consisting of 15-s spectrograms with time-frequency boxes 
indicating the sounds of interest (annotations), the model learned to 
precisely localize (in time and in frequency) and classify the five sound- 
types (if any) in the spectrograms. For each cross-validation fold, the 
model providing the best performance with the validation set was 
selected for further evaluation and analysis.

When using the model, each predicted box was associated with a 
class and a confidence index. Two parameters could be adjusted to trade 
off between missed detections and false positives: the confidence 
threshold score and the Non-Maximum Suppression (NMS) threshold. 
The confidence threshold retained predictions whose confidence score 
was greater than this value. The lower this value, the higher the number 
of predictions. The NMS threshold filtered out overlapping predicted 
boxes. Based on the Intersection over Union (IoU) value (Fig. 4), the 
lower the threshold, the fewer overlapping boxes there were. To avoid 
too many detections on the same objects, this value was set to 0.1. Data 
were processed using a PC with Intel® Core™ i9-10900KF CPU @ 
3.70GHz, 32 Go RAM, NVIDIA GeForce RTX 3080.

2.3.2. Scenario setting
The model was used under three different scenarios: (1) Detecting 

marine mammal sounds without classification to assess the presence/ 
absence of individuals; (2) Detecting and classifying at species level, 
either dolphin or porpoise class; (3) Detecting and classifying the five 
sound types, including dolphin click-trains (DCT), dolphin buzzes (DB), 
dolphin whistles (DW), porpoise click-trains (PCT) and porpoise buzzes 
(PB). The number of model detections could be adjusted according to 
whether a conservative model (i.e., one that is insensitive to noise, with 
few false positives) or a sensitive model (i.e., one that misses few sounds 
of interest) was wanted. To achieve this, the confidence threshold was 
either raised or lowered. Then, for each scenario, the detections were 
aggregated at the spectrogram scale (15 s) to evaluate the model using a 
single-class classification (i.e., each spectrogram can be associated with 
one label: (1) marine mammal) or a multilabel classification (i.e., each 
spectrogram can be associated with several labels: (2) dolphin/porpoise, 
(3) DCT/DB/DW/PCT/PB).

2.3.3. Model evaluation
As commonly used in deep learning-based object detection, the main 

metric used for model evaluation during the training process was the 
mean average precision (mAP). This metric was computed using the 
average precision (AP) of each class based on the Intersection over 
Union (IoU) (1) between the predicted box (Pbox) and grounding truth 
box (GTbox) (Fig. 4). The IoU threshold was set to 0.5, meaning that 
predicted boxes with an IoU above 50 % were considered to be correct. 

Consequently, the True Positives (TP, i.e. a box has been predicted and 
was expected), False Positives (FP, i.e. a box has been predicted but was 
not expected) and False Negatives (FN, i.e., no box has been predicted 
but one was expected) were determined for each confidence threshold, 
enabling the calculation of the precisions (2) and the recalls (3). The 
precision-recall curve was computed using the confidence scores of the 
detections, and the AP corresponded to the area under this curve. The 
APs of each class are then averaged to give the mean average precision 
(mAP).

It should be noted that in this study, a precise measurement at the 
bounding box scale was not necessary. Metrics at the spectrogram scale 
(15 s in this study) were sufficient and helped to reduce the false posi
tives. For the calculation of classification metrics, at a given confidence 
threshold, each spectrogram was associated with the grounding truth 
and predicted labels of the selected scenario (2.3.2. Scenario setting) 
from the grounding truth boxes labels and those of the predicted boxes. 
Thus, for each scenario setup and each class, the number of TP, FP, FN 
and True Negatives (TN) enabled the calculation of the precision, the 
recall, the F1-score (4) and the false positive rate (FPR) (5). To 
demonstrate the possibilities of using the model with different trade-offs 
between false positives and missed detections, precision-recall curves 
were produced for the three classification levels. Additionally, the areas 
under the precision-recall curve (AP) and the ROC curve (FPR-recall 
curve) (AUC) were computed (Hildebrand et al., 2022). Finally, the 
models were evaluated on the five-fold cross-validation datasets, with 
statistics (mean and standard deviation) computed for each metric 
mentioned above. 

IoU =
Pbox ∩ GTbox

Pbox ∪ GTbox
(1) 

Precision =
TP

TP + FP
(2) 

Recall =
TP

TP + FN
(3) 

F1 score =
2*Precsion*Recall
Precision + Recall

(4) 

FP rate =
FP

(FP + TN)
*
3600

Ls
(5) 

With Ls the length of the spectrogram (here 15 s) to calculate the 
number of false positives per hour.

Moreover, to assess the generalization of the model to a new dataset, 
the previous metrics were calculated on Dataset 2 using the five cross- 
validation models. This allowed the comparison of means and stan
dard deviations with the performances on the cross-validation datasets.

Finally, to explain the variability of model performance across 
datasets, Pearson correlation coefficients were calculated between per
formance metrics (i.e., the presence of false positives and true positives) 
and annotation certainty levels as well as noise levels. The latter were 
calculated with the python package scikit-maad (Ulloa et al., 2021) and 
correspond to the equivalent continuous sound pressure level (Leq) 
calculated over the 15-s spectrograms.

3. Results

This section analyzes the performance and adaptability of the object 
detection model on the cross-validation dataset for different classifica
tion tasks, including marine mammal detection (presence/absence), 
species classification and five-sound type classification. It will also 
highlight the model effectiveness in achieving a trade-off between false 
positives and missed detections, by presenting its performance at 
different confidence thresholds. Additionally, the evaluation of the 
model metrics for the three classification levels will highlight the 
model’s accuracy in detecting and classifying different marine mammal 

IoU=

Fig. 4. Intersection over Union (IoU).
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sounds. Furthermore, the evaluation of the model’s performance on a 
generalization dataset reveals its resilience to different environmental 
conditions. These results open prospects for optimizing the model’s 
effectiveness and applicability in other real-world scenarios.

3.1. Performance on the cross-validation dataset

3.1.1. False positives/missed detections trade-off
With the confidence scores for each detection, the precision-recall 

curves were calculated (Fig. 5) for the three scenarios. The confidence 
threshold was adjusted to obtain a trade-off between false positives and 
missed detections. To reduce the number of missed detections (e.g. 
recall around 90 %), a low confidence threshold was selected (e.g. 40 
%). Conversely, to reduce the number of false positives (e.g. precision 
around 90 %), a high confidence threshold was selected (e.g. 90 %). 
Finally, to achieve a balance between missed detections and false posi
tives (precision roughly equivalent to recall), an intermediate threshold 
was selected (70 %). For instance, in the case of species classification, 
selecting a low confidence threshold (40 %) resulted in a reduction in 
missed detections (recall = 90.9 %). On the other hand, selecting a high 
confidence threshold (90 %) reduced the false positives (precision =
96.4 %). Finally, the best trade-off between these two was obtained with 

a confidence threshold of 70 %, giving precision = 86.5 % and recall =
83.6 %. The figure also shows that the more precise the classification, 
the smaller the area under the curve. In other words, the more complex 
the model, the lower the model’s performance.

The count of spectrograms with detections was also retrieved to 
assess their proportion within the entire Dataset 1, i.e., the validation 
dataset plus the remaining background spectrograms (for a total of 
148641 spectrograms including 391 with annotations) (Table 1 – 
Dataset 1). In particular, using a low confidence threshold (40 %), 15.4 
% of spectrograms had detections and 6.6 % of annotated spectrograms 
were missed. As the confidence threshold increased, the number of 
spectrograms with detections decreased, while the number of missed 
detections increased.

3.1.2. Performance of the three classification levels
The detection metrics were calculated for the three scenarios (marine 

mammal detection, species classification, and five-sound type classifi
cation) at the three selected confidence thresholds (40 %, 70 %, 90 %). 
Metrics for the 70 % threshold are detailed in Table 2 – Dataset 1, and 
those for 40 % and 90 % in Table B.1 and B.2.

As observed in Table 2 – Dataset 1, the model achieved a good F1- 
score of 88.0 % for marine mammal detection, 84.7 % for species 

Fig. 5. Precision-recall curves. Calculated using a confidence threshold (CT) from 0 to 1 with a step of 0.1 and for the three classification levels (Marine mammal 
detection, Species classification, Five-sound type classification). Three thresholds selected: 40 %, 70 % and 90 %. (Recall, Precision) for Marine mammal detection, 
Species classification (Dolphin/Porpoise), Five-sound type classification (Dolphin Click-Train, Porpoise Click-Train, Dolphin Buzz, Porpoise Buzz, Dolphin Whistle): 
40 %: (93.4, 80.0), (90.9, 71.5), (84.1, 67.2); 70 %: (86.1, 90.0), (83.6, 86.5), (72.4, 83.0); 90 %: (72.7, 97.7), (70.3, 96.4), (54.1, 91.9).
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classification and 75.8 % for the five-sound type classification. In more 
detail, dolphin and porpoise click-trains achieved 87.7 (SD: 1.6) % and 
82.0 (SD: 2.5) % respectively. Dolphin and porpoise buzzes achieved 
lower scores with a higher standard deviation: 64.8 (SD: 5.3) % and 53.0 
(SD: 12.6) % respectively. Finally, the best score was obtained for dol
phin whistles: 91.7 (SD: 5.2) %. Globally, the more precise the classifi
cation, the lower the mean values (precision (90.0 % > 83.0 %), recall 
(86.1 % > 72.4 %) and F1-score (88.0 % > 75.8 %)) and the higher the 
false positive rate (23.1 FP/H < 24.9 FP/H).

To obtain a more representative value for the false positive rate, the 
metric was also calculated using all the background spectrograms in 
Dataset 1 (validation dataset plus the remaining background spectro
grams). This yielded lower false positive rates, from 13.4 FP/H (marine 
mammal detection) to 14.2 FP/H (five-sound type classification).

Finally, areas under the precision-recall curves (AP) and the ROC 
curves (AUC-ROC) were macro-averaged between values per classes 
(Table B.3 and Table B.4). For species classification, this yielded a mAP 
of 92.3 (SD: 1.1) % and a macro-average AUC of 95.7 (SD: 0.9) %. And 
for five-sound type classification, this yielded a mAP of 84.3 (SD: 1.7) % 

and a macro-average AUC of 94.9 (SD: 0.6) %.

3.2. Performance on the generalization dataset

In this subsection, we investigated the generalization capacity of the 
model, trained on Dataset 1, by evaluating its performance on Dataset 2. 
Firstly, the count of spectrograms with detections was obtained to assess 
their proportion within the five-day dataset (totaling 30240 spectro
grams, including 213 annotated ones) (Table 1 – Dataset 2). In partic
ular, by using a low confidence threshold (40 %), 49.0 % of 
spectrograms had detections and 3.7 % of annotated spectrograms were 
missed.

Then, the recall and false positive rate were calculated for the three 
scenarios (marine mammal detection, species classification and five- 
sound type classification) with a confidence threshold of 70 % 
(Table 2 – Dataset 2).

Compared to Dataset 1, the model achieved a good recall of 77.2 % 
for marine mammal detection. However, the macro-average recall is 
lower for the five-sound type classification with a value of 59.1 %, 
particularly due to the low value of 41.4 % for dolphin click-train. 
Additionally, false positive rates are much higher than those of Data
set 1 (100.6 > 24.9 FP/H).

Finally, areas under the ROC curves (AUC-ROC) were macro- 
averaged between values per classes (Table B.5) yielding a macro- 
average AUC of 87.0 (SD: 1.2) %.

3.3. Explanatory analysis of results

Fig. 3 illustrates annotated spectrograms showing the detections 
provided by the model and highlighting the diversity of marine mammal 
sounds and background noise present in the datasets. These outputs 
emphasized the model’s ability to accurately detect a variety of marine 
mammal sounds, while illustrating specific instances of missed de
tections and false positives. In particular, Fig. 3-F illustrates the model 
detections of non-biological sounds resembling dolphin and porpoise 
buzzes. Finally, this figure highlights the importance of calculating 
metrics on a 15-s scale, demonstrating a reduction in false positives and 

Table 1 
Number of spectrograms to be checked manually, and number of missed anno
tated spectrograms for the cross-validation (Dataset 1) and generalization 
(Dataset 2) datasets. Percentages were calculated on the total number of spec
trograms in each dataset (Dataset 1: 148641; Dataset 2: 30240) and on the 
number of annotated spectrograms (Dataset 1: 391 per fold; Dataset 2: 213). 
Percentage (number of spectrograms).

Spectrograms with detections Missed annotated 
spectrograms

Confidence 
threshold

Dataset 1 Dataset 2 Dataset 1 Dataset 2

40 %
15.4 % 
(22939)

49.0 % 
(14822) 6.6 % (26) 3.7 % (8)

70 % 5.8 % (8606)
31.4 % 
(9483)

13.9 % (55) 22.8 % (49)

90 % 1.5 % (2196) 7.9 % (2381) 27.3 % 
(107)

57.7 % 
(123)

Table 2 
Evaluation metrics (Precision, Recall, F1-score and False Positive Rate) for the three scenarios with a 70 % confidence threshold (best trade-off between false positives 
and missed detections) for Datasets 1 and 2. Precision, Recall and F1-score in percent, False Positive Rate in False Positives/Hour. Mean (standard deviation).

A) Marine mammal detection

Precision (%) Recall (%) F1-score (%) False Positive Rate (FP/H)

Class Dataset 1 Dataset 1 Dataset 2 Dataset 1 Dataset 1 Dataset 2

Marine Mammal 90.0 (1.7) 86.1 (1.6) 77.2 (5.5) 88.0 (1.0) 23.1 (4.6) 74.5 (10.2)

B) Species classification

Precision (%) Recall (%) F1-score (%) False Positive Rate (FP/H)

Class Dataset 1 Dataset 1 Dataset2 Dataset 1 Dataset 1 Dataset 2

Dolphin 84.8 (2.6) 90.5 (1.8) 48.6 (5.8) 84.7 (1.5) 15.7 (3.1) 30.0 (7.2)
Porpoise 88.2 (3.6) 76.7 (3.4) 83.1 (5.3) 82.0 (2.4) 6.9 (2.0) 58.6 (10.1)
Macro Average (Sum for FPR) 86.5 (1.9) 83.6 (1.9) 65.9 (5.2) 84.7 (1.5) 22.6 (3.5) 88.5 (13.5)

C) Five-sound type classification

Precision (%) Recall (%) F1-score (%) False Positive Rate (FP/H)

Class Dataset 1 Dataset 1 Dataset 2 Dataset 1 Dataset 1 Dataset 2

Dolphin Click-Train 84.5 (3.8) 91.4 (2.4) 41.4 (4.0) 87.7 (1.6) 12.8 (3.5) 9.8 (1.7)
Porpoise Click-Train 87.6 (4.4) 77.2 (3.9) 76.9 (5.6) 82.0 (2.5) 7.0 (2.5) 30.5 (10.4)
Dolphin Buzz 64.5 (9.0) 66.7 (10.5) N/A 64.8 (5.3) 4.5 (2.5) 20.1 (5.1)
Porpoise Buzz 79.4 (27.7) 40.8 (7.9) N/A 53.0 (12.6) 0.6 (0.8) 38.4 (5.8)
Dolphin Whistle 99.1 (2.0) 85.7 (8.5) N/A 91.7 (5.2) 0.1 (0.1) 1.8 (1.6)
Macro Average (Sum for FPR) 83.0 (6.7) 72.4 (2.7) 59.1 (4.3) 75.8 (4.1) 24.9 (4.6) 100.6 (17.4)
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missed detections.
Fig. 6 - Dataset 1 gives information about the temporal evolution of 

the ambient soundscape of Dataset 1. The presence of mooring-related 
harmonic noise (5, 10 and 15 kHz) was noticed most of the time in 
the dataset. Particularly between November 29th and December 5th, 
and from December 12th, with high frequency components, also from 
ships passing close by and potentially from Acoustic Deterrent Devices 
(ADDs).

The sound pressure level and the certainty level of the annotations 
give some explanation of the model’s performance. The Pearson corre
lation coefficient between the sound pressure level at high frequency 
[80–156 kHz] and the presence of a false positive (0/1) per spectrogram 
was 0.20 (p < 0.001). Thus, the increases in the false positive rate tend to 
coincide with periods of high-frequency noise. However, the false pos
itive rate was acceptable: averaging less than 20 FP/H for most of the 
time over the entire dataset (Fig. B.1). Additionally, the correlation 
coefficient between the mean level of certainty of the annotations and 
the presence of a true positive (0/1) per spectrogram was 0.28 (p <
0.001). Thus, the presence of annotations with low certainty levels and/ 
or the absence of annotations with high certainty levels tend to decrease 
the recall.

The certainty level of the annotations also provides information on 
the causes of performance differences between the cross-validation and 
the generalization datasets. A higher proportion of annotations with low 
certainty levels was noticed compared to Dataset 1 (Fig. B.2) and the 
Pearson correlation coefficient between the mean level of certainty of 
the annotations and the presence of a true positive (0/1) per spectro
gram was 0.39 (p < 0.001). Moreover, some acoustic differences were 
observed between these two datasets for the dolphin click-trains. The 
average value of the upper frequency limit was 101 (SD: 35) kHz for the 
generalization dataset as opposed to 139 (SD: 21) kHz for the cross- 
validation dataset, and a first quartile at 70 kHz as opposed to 142 kHz.

Moreover, the presence of sounds potentially generated by acoustic 

deterrent devices (ADDs) resembling marine mammal sounds was noted 
in the recordings, particularly in Dataset 2. Indeed, out of 100 randomly 
selected false positives, 68 were likely to be sounds of ADDs and 
occurred regularly in Dataset 2. On the other hand, in Dataset 1, only 19 
% of false positives were due to ADDs, particularly at the end of the 
dataset (from November 13th). Moreover, Fig. 6 – Dataset 2 highlights 
the presence of high-frequency noise throughout Dataset 2.

4. Discussion

In this study, the development and evaluation of an object detection 
model adapted to the detection and classification of marine mammal 
sounds from spectrograms over a wide frequency range were investi
gated. Thanks to the model’s capabilities, it was possible to accurately 
localize (in time and frequency) and classify marine mammal sounds in 
large datasets, demonstrating its potential to facilitate manual annota
tion processes in the context of environmental monitoring of underwater 
fauna in OWFs. This section presents an in-depth discussion of the re
sults, focusing on the model’s performance across three levels of clas
sification (marine mammal detection, species classification, five-sound 
type classification), its ability to adapt to find a compromise between 
false positives and missed detections, and its relevance to marine 
mammal monitoring. In addition, the study of the model’s performance 
on a generalization dataset revealed information about its resilience to 
new environmental conditions. These results have opened up prospects 
for improving the model and broadening its possible uses, in order to 
contribute to the advancement of marine mammal research (e.g. 
acoustic behavior) and the enhancement of passive acoustic monitoring 
techniques.

Fig. 6. Long-term average spectrum (LTAS) of Dataset 1 (upper) and Dataset 2 (lower). Sound pressure level in dB (ref. 1 μPa).
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4.1. Qualitative evaluation

4.1.1. Model performance
As one of the first applications of an object detection model to un

derwater acoustic data, the performances obtained in this study are 
encouraging. When applied to the whole dataset, the model efficiently 
identified the 15-s spectrograms containing marine mammal sounds 
while only missing 7 % of the spectrograms with annotations. Detections 
from the model were spread along one sixth of the spectrograms (22939 
spectrograms with detections out of 148641 spectrograms) meaning that 
the model can greatly ease manual verification by: (i) removing more 
than three-quarters of the dataset without sounds of interest, and (ii) 
providing spectrograms where detection boxes are drawn, guiding an
notators toward potential marine mammal sounds.

When comparing model performances for the three classification 
levels (presence/absence, dolphin/ porpoise, five sounds), the most 
complex task, the five-sound type classification, exhibited a macro 
average F1-score lower than solely identifying the presence or absence 
of a marine mammal sound. This loss of performance when increasing 
the complexity of the classification task is likely due to low occurrences 
of some sound classes, such as buzzes, for which the model did not have 
enough examples to train and then detect these rare sound events. Other 
methods like few-shot learning (Nolasco et al., 2022; Xu et al., 2021) 
may be more relevant for this type of rare sounds. Increasing the data 
quantity using data augmentation (Li et al., 2021; Padovese et al., 2021) 
could also be tested to improve the results (i.e., raise mean values and 
reduce standard deviations). This solution is based on the creation of 
new artificial data to have a larger training dataset. These new data can 
be created by adding, for instance, background noise to known sounds of 
interest. In the case of passive acoustic monitoring this would be inter
esting, as the datasets mainly contain recordings without sounds of in
terest, constituting a large dataset for data augmentation. Finally, in this 
study, the Faster R-CNN model was used with few modifications. To 
enhance the model’s performance, hyperparameters could be fine-tuned 
according to the input data. For instance, this might involve shaping the 
anchors (time-frequency box proposals) or adjusting the pooling size 
(ensuring identical resolution for all region proposals).

As a last general comment on the results, despite the limited in
stances of dolphin whistles, the mean metrics and standard deviations 
remained acceptable. The accurate detection of dolphin whistles may be 
attributed to their distinctiveness, making them less susceptible to 
confusion with other background noises. Impulsive sounds like click- 
trains and buzzes are more likely to be confused with other impulsive 
noises, such as impacts, mooring noise or acoustic deterrent devices. We 
noted that a major strength of this type of model, compared with simple 
classification models, is its ability to precisely localize different types of 
sound in time and particularly in frequency, enabling it to easily 
distinguish between the clicks of the two species with very distinct 
frequency ranges (dolphins: 20–100 kHz and porpoises: 100–150 kHz).

Regarding the results on the generalization dataset, although not all 
the training sound classes were found in these recordings, the evaluation 
of the model’s performance yielded insights. Firstly, the model effec
tively reduced the number of spectrograms to be manually checked: half 
of the dataset (49 %) included spectrograms with detections, with only 
4 % of spectrograms with annotations missed. Then, an increase in false 
positives was noticed compared to the previous dataset. Indeed, during 
the annotation process, it was observed that this dataset contained many 
more high frequency noise events. Further investigation suggested that 
these sounds may originate from acoustic pingers emitting signals 
resembling dolphin and porpoise buzzes (McGarry et al., 2022; Schaf
feld, 2016). This emphasized the need for deeper acoustic studies for a 
better distinction between marine mammal buzzes and acoustic pingers. 
One possible approach to address this question is to calculate low-level 
acoustic features (such as the inter-click interval) within the time- 
frequency boxes of the sounds detected by the model, followed by 
dimensionality reduction and clustering techniques. For instance, 

techniques like UMAP (McInnes et al., 2020) and DBSCAN (Ester et al., 
1996) could be employed to identify clusters of click-trains, buzzes and 
anthropogenic noises. This model is also promising for advancing 
bioacoustics research, enabling more in-depth studies of vocalizations. It 
could be useful for studying the existence of different types of buzzes and 
click-trains. Indeed, click-trains and buzzes are not necessarily used only 
for echolocation and foraging. Some studies (Clausen et al., 2011; 
Sørensen et al., 2018) have found that click-trains and buzzes may also 
be used for communication between individuals.

Moreover, dolphin click-trains were less well detected in the gener
alization dataset probably due to the changes in their acoustic signa
tures, and especially to the decrease in energy in the high frequencies. 
Since high frequencies propagate less well than low frequencies, these 
results may be explained by a non-optimal source-receiver orientation, 
or by changes in environmental parameters (such as temperature or 
salinity) (Urick, 1983). In addition, even for the expert annotator it was 
difficult to identify the marine mammal sounds. Indeed, a higher pro
portion of annotations with a low certainty level was noticed compared 
to Dataset 1.

4.1.2. Model relevance for marine mammal monitoring
Regulatory studies are currently required throughout the life cycle of 

OWF. Most are carried out using a hydrophone to measure ambient 
noise, accompanied by a C-Pod or F-Pod to detect marine mammal 
clicks. The latter are quick and inexpensive to set up, and can be used to 
monitor site frequentation, but the output data are limited and allows 
only limited post-processing. With a broadband hydrophone and an 
object detection model, it is possible to obtain high-quality data, giving 
more precise temporal and frequency information on the various vo
calizations of marine mammals, enabling us to study their behavior and 
carry out ecological inferences over the long term.

Using a model to detect and classify marine mammal sounds is more 
complex than merely detecting them without classification. However, 
achieving a perfect model (100 % precision and recall) in both cases is 
challenging. Thus, different confidence thresholds can be used to adapt 
the model to favor either missed detections or false detections, making it 
versatile for diverse situations. For instance, if the model is employed to 
simply detect marine mammal sounds in the vicinity of OWFs during 
periods requiring attention (e.g. construction works), the threshold 
could be lowered to ensure that marine mammal sounds are not missed. 
On the other hand, if the model is used for long-term monitoring of the 
presence and behavior of marine mammals around the OWF, it may be 
interesting to raise the confidence threshold to reduce the number of 
spectrograms that have to be checked manually. Thus, using a low 
confidence threshold, 6.6 % of missed detections and 15.4 % of false 
detections were reached for the detection of marine mammals. With a 
high confidence threshold, 45.9 % of missed detections and 8.1 % of 
false detections were reached for the detection and classification of the 
five sound types. In real applications, these values could be used to 
adjust the results of detections (i.e., estimating the real quantity of de
tections by adding the probability of missed detections and subtracting 
the probability of false detections).

Additionally, Shiu et al., 2020 estimated that to be efficient (i.e., to 
obtain an acceptable quantity of detections to be manually checked) the 
model should not exceed 20 FP/H. In this study, with a confidence 
threshold of 40 % and 90 %, the false positive rate was 68 and 5 FP/H 
respectively. Improvements have to be made to reduce false positives 
and to obtain higher recall and precision scores. Implementing iterative 
learning and hard negative mining techniques (Allen et al., 2021; Shiu 
et al., 2020) could be a solution. Through strategic selection of back
ground spectrograms rather than random selection, as is the case here 
the model could be exposed to more challenging spectrograms, partic
ularly those for which it is prone to false detections (with ADDs for 
instance). This deliberate exposure enhances the model robustness to 
diverse ambient background noises, by reducing the occurrence of false 
positives. However, it is essential to note that this approach may result in 
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a higher rate of missed detections.
Although it was difficult to compare model performance across 

different research studies due to a lack of standardization in evaluation 
protocols, the mAP (84.3 %) and AUC-ROC (94.9 %) of the validation 
datasets were within a similar order of magnitude to other studies using 
CNNs to classify animal sounds (Shiu et al. (2020), LeBien et al. (2020), 
Ruff et al. (2021)). In particular Shiu et al. (2020), who compared two 
CNN models for binary classification of a single marine mammal sound 
(AP of 90 % and 83 %). The advantage of our model over conventional 
CNN classification models was the precise temporal and frequency 
localization of sounds in the spectrogram, making it easier to distinguish 
sounds of multiple species over a wide frequency range and enabling 
possible future analyses on the sounds of interest.

Despite the different scales of analysis of object detection model 
performance (spectrogram or box scale), the performance of our model 
could be considered to be of the same order of magnitude as other object 
detection models. Ferguson et al. (2022) trained three separate models 
to detect three marine mammal species (without call classification). 
They obtained an f1 score between 45 % and 63 %, compared with 82 % 
and 85 % for dolphin and porpoise in our study. Wu et al. (2021) trained 
a single model to detect the sounds of six owl species in a narrow fre
quency band (100 Hz-16 kHz). They obtained a mAP and AUC-ROC of 
83 % and 89 % respectively. By aggregating our detections at spectro
gram scale, we improved our results, but by having a single model with 
more species and sound types to classify, we achieved performance of 
the same order of magnitude as these studies. Compared with these 
models, we demonstrated the ability of a single object detection model 
to detect and classify multiple species and types of sound over a wide 
frequency range.

Thus, our model could find interesting use in many areas where 
species are numerous and have a wide vocal repertoire, such as in 
tropical forests (Hart et al., 2021) or coral reefs (Noble et al., 2024). It is 
also promising for use on a larger scale (other locations and time scales) 
using transfer learning. The latter has been successfully applied to ma
rine acoustic environments using CNN (White et al., 2023).

Finally, this study demonstrated the ability of a single model to 
detect and classify several marine mammal sounds over a wide fre
quency range. In its current form, the model is not applicable to real- 
time but is a proof of concept that could be transferred to real-time in 
future work and can currently be used for post hoc studies.

4.2. Future work

In addition to the avenues for improvement identified in the previous 
paragraphs, some ideas for future work are proposed in this section.

4.2.1. Improvement of input data
Data-centric AI (Motamedi et al., 2021) reminds us of the need for 

good input data for model training. For this, the annotation process may 
be improved and further standardized. Currently, the annotation process 
is not necessarily performed by the same person or with the same 
acquisition and signal processing parameters, influencing the manner 
click-trains and buzzes are annotated and thus the learning of the model. 
Implementing an annotation platform (e.g. Aplose platform: https://gith 
ub.com/Project-OSmOSE/osmose-app) that standardizes the spectro
gram display eliminates the biases induced by the choices of signal 
processing parameters. Moreover, annotators are not perfect and may 
make some annotation errors (missed detections or false detections, as 
well as variation of the annotation method over time) (Nguyen Hong 
Duc et al., 2021). A solution could be to invite more people to analyze 
the same datasets to reinforce the validity of annotations. In our case, 
the presence of annotations with a low certainty level influenced model 
learning and performance. Grouping annotations from several annota
tors would enable the model to be trained with a greater number of high- 
certainty annotations, thus improving model performance. The study of 
inter-annotator variability and the development of methods to group 

and validate the annotations from multiple annotators is an area of in
terest that should continue to be explored (Dubus et al., 2024).

4.2.2. Toward the generalization of the model
In this study, the model was evaluated over a different time period 

from the training one to assess its robustness against other noise envi
ronments, with the aim of evaluating the relevance of precision and 
recall over time. A decline in recall and an increase in the false positive 
rate were observed in the generalization dataset. The ambient noise 
level and the degree of certainty of annotations affect the model’s per
formance, as does the diversity of ambient background noise, which can 
vary significantly over time. Thus, it is important to obtain more diverse 
data (i.e., from other periods, locations and environmental conditions) 
for a more complete model training to achieve better performance for 
new environments. Moreover, in the case of cross-validation, having 
more diverse data would enable us to obtain folds that are more repre
sentative of reality and thus reduce uncertainties in the cross-validation 
results and give a better idea of the generalization capabilities of the 
model. This need of data has been mentioned by Parsons et al. (2022)
but obtaining acoustic and annotated datasets is rare and costly.

Furthermore, in the future, as the model may need to be trained on 
acoustic data covering a wide spatial and temporal domain, it could be 
interesting to add contextual information (e.g. date and location) as an 
additional model input to improve detection and classification of vo
calizations (Jeantet and Dufourq, 2023) which can vary over the seasons 
and between local species. Finally, the model has been trained on 
spectrograms with a particular sampling frequency. Further de
velopments are necessary to obtain a model usable with data recorded 
with different sampling frequencies. The model needs to be adapted to 
better consider the ordinate axis of the spectrograms (frequencies). It 
may be interesting to study rainbow mapping (Wu et al., 2021) or co
ordinate convolution (Liu et al., 2018).

5. Conclusion

The advancements in deep learning have led to the development of 
numerous sound detection and classification models. These models play 
a crucial role in the monitoring of species based on their vocalizations. 
This study has introduced a promising object detection model specif
ically tailored to the detection and classification of marine mammal 
sounds over a wide frequency range. Compared with manual analysis, 
this model facilitates the monitoring of marine mammal species, espe
cially in the assessment of their behavioral patterns around offshore 
wind farms. However, the disadvantage of passive acoustics is that it 
does not readily provides abundance estimates of marine mammals. One 
solution would be to merge the information from different survey 
methods (such as aerial surveys, cameras, biologging or eDNA) to 
compensate for the advantages and disadvantages of each method. This 
advancement would enhance the monitoring of marine mammals in the 
vicinity of OWFs. Further studies are required to develop methods for 
automating the processing and merging of the substantial quantity of 
data collected. The automation of data collection and processing also 
offers the unique opportunity to transmit ecological information in real- 
time which is crucial to optimize the cost-effectiveness of monitoring 
strategies for OWFs that are bound to be increasingly distant from the 
coast.
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Appendix A. Dataset

Table A.1 
Content of the five folds. Number of spectrograms (S) per class and per fold, and number of annotations (A) per class and per fold.

Fold Dolphin 
Click-train

Porpoise 
Click-Train

Dolphin 
Buzz

Porpoise 
Buzz

Dolphin 
Whistle

S A Background 
Spectrograms

S A S A S A S A S A 25 kHz 156 kHz

1
87 399 169 321 32 44 12 16 24 57 392 837 24 368
(19.9 
%)

(19.7 
%)

(20.4 
%)

(19.9 
%)

(17.9 
%)

(17.3 
%)

(19.4 
%)

(21.1 
%)

(20.3 
%)

(18.0 
%)

(20.0 
%)

(19.5 
%)

(20.3 
%)

(20.0 
%)

2
179 404 177 380 30 47 11 15 24 59 392 905 24 368
(19.1 
%)

(19.9 
%)

(21.4 
%)

(23.6 
%)

(16.8 
%)

(18.5 
%)

(17.7 
%)

(19.7 
%)

(20.3 
%)

(18.6 
%)

(20.0 
%)

(21.1 
%)

(20.3 
%)

(20.0 
%)

3
195 425 161 318 35 52 10 10 24 60 392 865 24 368
(20.8 
%)

(21.0 
%)

(19.5 
%)

(19.7 
%)

(19.6 
%)

(20.5 
%)

(16.1 
%)

(13.2 
%)

(20.3 
%)

(18.9 
%)

(20.0 
%)

(20.2 
%)

(20.3 
%)

(20.0 
%)

4
182 410 172 315 35 48 13 19 23 83 391 875 23 368
(19.4 
%)

(20.2 
%)

(20.8 
%)

(19.5 
%)

(19.6 
%)

(18.9 
%)

(21.0 
%)

(25.0 
%)

(19.5 
%)

(26.2 
%)

(20.0 
%)

(20.4 
%)

(19.5 
%)

(20.0 
%)

5
196 390 148 279 47 63 16 16 23 58 390 806 23 367
(20.9 
%)

(19.2 
%)

(17.9 
%)

(17.3 
%)

(26.3 
%)

(24.8 
%)

(25.8 
%)

(21.1 
%)

(19.5 
%)

(18.3 
%)

(19.9 
%)

(18.8 
%)

(19.5 
%)

(20.0 
%)

Sum 939 2028 827 1613 179 254 62 76 118 317 1957 4288 118 1839

Appendix B. Results

Table B.1 
Evaluation metrics (Precision, Recall, F1-score and False Positive Rate) for the three scenarios with a 40 % confidence threshold for 
Dataset 1. Precision, Recall and F1-score in percent, False Positive Rate in False Positives / Hour. Mean (standard deviation).

A) Marine mammal detection

Class Precision 
(%)

Recall 
(%)

F1-score 
(%)

False Positive Rate 
(FP/H)

Marine Mammal 80.0 (1.6) 93.4 (1.1) 86.2 (0.7) 56.2 (6.0)

B) Species classification

Class Precision 
(%)

Recall 
(%)

F1-score 
(%)

False Positive Rate 
(FP/H)

Dolphin 70.2 (3.1) 95.4 (1.8) 80.8 (1.5) 39.3 (6.8)
Porpoise 72.9 (5.0) 86.4 (1.1) 79.0 (2.7) 21.9 (4.4)
Macro Average 

(Sum for FPR) 71.5 (2.5) 90.9 (0.6) 79.9 (1.5) 61.2 (7.3)

C) Five-sound type classification

(continued on next page)
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Table B.1 (continued )

C) Five-sound type classification

Class Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

False Positive Rate 
(FP/H)

Class Precision 
(%)

Recall 
(%)

F1-score 
(%)

False Positive Rate 
(FP/H)

Dolphin Click-Train 68.8 (3.6) 94.9 (2.3) 79.7 (1.7) 32.9 (5.9)
Porpoise Click-Train 72.2 (6.9) 86.6 (1.2) 78.6 (4.0) 21.6 (5.7)
Dolphin Buzz 45.4 (4.8) 78.8 (6.8) 57.3 (3.3) 11.0 (2.6)
Porpoise Buzz 54.2 (20.7) 62.9 (13.5) 57.5 (17.2) 2.3 (1.5)
Dolphin Whistle 95.4 (6.7) 97.5 (2.3) 96.3 (3.7) 0.4 (0.6)
Macro Average 

(Sum for FPR) 67.2 (4.0) 84.1 (1.6) 73.9 (3.4) 68.2 (8.9)

Table B.2 
Evaluation metrics (Precision, Recall, F1-score and False Positive Rate) for the three scenarios with a 90 % confidence threshold for 
Dataset 1. Precision, Recall and F1-score in percent, False Positive Rate in False Positives / Hour. Mean (standard deviation).

A) Marine mammal detection

Class Precision 
(%)

Recall 
(%)

F1-score 
(%)

False Positive Rate 
(FP/H)

Marine Mammal 97.7 (0.8) 72.7 (3.0) 83.3 (1.9) 4.2 (1.7)

B) Species classification

Class Precision 
(%)

Recall 
(%)

F1-score 
(%)

False Positive Rate 
(FP/H)

Dolphin 95.9 (1.1) 80.9 (3.3) 87.7 (1.7) 3.3 (0.9)
Porpoise 96.9 (2.7) 59.8 (7.0) 73.7 (5.5) 1.3 (1.1)
Macro Average 

(Sum for FPR) 96.4 (1.7) 70.3 (4.0) 80.7 (2.9) 4.7 (1.8)

C) Five-sound type classification

Class Precision 
(%)

Recall 
(%)

F1-score 
(%)

False Positive Rate 
(FP/H)

Dolphin Click-Train 95.6 (1.8) 84.3 (4.4) 89.5 (2.3) 3.0 (1.2)
Porpoise Click-Train 96.1 (2.7) 61.2 (7.6) 74.5 (5.8) 1.6 (1.1)
Dolphin Buzz 88.0 (5.4) 48.7 (11.0) 62.1 (8.9) 0.8 (0.5)
Porpoise Buzz 80.0 (44.7) 11.7 (8.1) 20.1 (13.5) 0.0 (0.0)
Dolphin Whistle 100.0 (0.0) 64.5 (10.1) 78.1 (7.6) 0.0 (0.0)
Macro Average 

(Sum for FPR) 91.9 (8.7) 54.1 (2.6) 64.9 (2.9) 5.4 (1.8)

Table B.3 
Dataset 1 - Average Precision (AP) per fold for each class of each classification level. For each classification level, the APs are macro-averaged.

AP MM D P D/P DCT PCT DB PB DW Five classes

1 95.7 % 94.8 % 90.3 % 92.6 % 94.9 % 90.4 % 70.5 % 74.1 % 100.0 % 86.0 %
2 95.9 % 95.5 % 92.3 % 93.9 % 96.1 % 92.5 % 65.8 % 66.6 % 98.3 % 83.9 %
3 96.0 % 95.1 % 89.7 % 92.4 % 96.1 % 89.3 % 82.1 % 42.8 % 99.8 % 82.0 %
4 95.6 % 96.0 % 87.2 % 91.6 % 96.0 % 87.4 % 74.4 % 61.8 % 99.2 % 83.8 %
5 95.3 % 95.1 % 86.7 % 90.9 % 94.1 % 85.8 % 71.5 % 78.4 % 99.7 % 85.9 %
Mean 95.7 % 95.3 % 89.2 % 92.3 % 95.4 % 89.1 % 72.9 % 64.8 % 99.4 % 84.3 %
Std 0.3 % 0.5 % 2.3 % 1.1 % 0.9 % 2.6 % 6.0 % 13.9 % 0.7 % 1.7 %
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Table B.4 
Dataset 1 - Area under the receiver operating characteristic curve (AUC-ROC) per fold for each class of each classification level. For each classification level, the AUC- 
ROCs are macro-averaged.

AUC-ROC MM D P D/P DCT PCT DB PB DW 5 classes

1 94.9 % 97.1 % 94.0 % 95.5 % 97.3 % 94.2 % 92.0 % 91.4 % 100.0 % 95.0 %
2 95.4 % 97.8 % 96.1 % 97.0 % 98.3 % 96.2 % 92.6 % 90.4 % 99.9 % 95.5 %
3 95.3 % 96.8 % 95.2 % 96.0 % 97.9 % 94.8 % 95.5 % 88.7 % 100.0 % 95.4 %
4 94.9 % 97.4 % 92.6 % 95.0 % 97.6 % 93.0 % 92.7 % 87.7 % 100.0 % 94.2 %
5 94.4 % 97.1 % 92.6 % 94.9 % 96.8 % 92.3 % 89.2 % 93.3 % 100.0 % 94.3 %
Mean 95.0 % 97.2 % 94.1 % 95.7 % 97.6 % 94.1 % 92.4 % 90.3 % 100.0 % 94.9 %
Std 0.4 % 0.4 % 1.5 % 0.9 % 0.6 % 1.6 % 2.3 % 2.2 % 0.0 % 0.6 %

Table B.5 
Dataset 2 - Area under the receiver operating characteristic curve (AUC-ROC) for each class of each classification level. For each classification level, the AUC-ROCs are 
macro-averaged. For the five-sound type classification, only the two present classes were considered.

AUC-ROC MM D P D/P DCT PCT DB PB DW 5 classes

1 84.4 % 81.8 % 90.1 % 86.0 % 84.1 % 90.7 % N/A N/A N/A 87.4 %
2 82.9 % 77.2 % 89.0 % 83.1 % 79.4 % 90.4 % N/A N/A N/A 84.9 %
3 82.4 % 77.2 % 89.1 % 83.1 % 83.4 % 91.6 % N/A N/A N/A 87.5 %
4 83.8 % 81.7 % 89.1 % 85.4 % 84.7 % 90.4 % N/A N/A N/A 87.5 %
5 83.1 % 80.6 % 89.2 % 84.9 % 84.5 % 91.3 % N/A N/A N/A 87.9 %
Mean 83.3 % 79.7 % 89.3 % 84.5 % 83.2 % 90.9 % N/A N/A N/A 87.0 %
Std 0.8 % 2.3 % 0.5 % 1.3 % 2.2 % 0.6 % N/A N/A N/A 1.2 %
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Fig. B.1. Dataset 1 – Temporal evolution of the sound pressure level (SPL, dB), the false positive (FP) rate (FP/H), the recall and the certainty level (CL) of the 
annotations. The sound pressure level was calculated with an integration time of one second and with a reference pressure of 1 μPa. The false positive rate and the 
recall were calculated for the marine mammal detection (without classification). The false positive rate corresponds to the number of false positives per hour. The 
recall was calculated per hour. The certainty level of the annotations was averaged and rounded per spectrograms (the y-axis was log-scaled to visualize the low 
presence of annotations with a low certainty level).
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Fig. B.2. Dataset 2 – Temporal evolution of the sound pressure level (SPL, dB), the false positive (FP) rate (FP/H), the recall and the certainty level (CL) of the 
annotations. The sound pressure level was calculated with an integration time of one second and with a reference pressure of 1 μPa. The false positive rate and the 
recall were calculated for the marine mammal detection (without classification). The false positive rate corresponds to the number of false positives per hour. The 
recall was calculated per hour. The certainty level of the annotations was averaged and rounded per spectrograms.

Data availability

The source code of this work and the data are available on GitLab: 
https://gitlab.france-energies-marines.org/Quentin/owfsomm. The 
data are protected by a license CC BY-NC-ND 4.0. The full data are 
available upon request for academic research use. 
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