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Abstract 

 

Although wind power has proven to be a key component in the efforts of fighting climate change, 

their harmful effects on avian wildlife has raised increasingly prominent concerns. As the 

development of wind power is expected to continue at a faster pace, the potential increase in fatal 

bird collisions is immense. Large-bodied, soaring birds are known to be particularly at risk, for which 

the White-tailed Eagle (Haliaeetus albicilla) is quintessential.  

 

In this study, the collision risk for white-tailed eagles were predicted and extrapolated to the entire 

landscape of central and northern Norway (i.e. mapping their landscape of risk). The predictions were 

based on satellite telemetry data, showing the wide-ranging movements patterns of 34 sub-adult 

individuals. Their total predicted collision risk across the landscape was found by combining the 

results of three predictive models, including their resource selection, their risk flight height (50 – 185 

m), and a mathematical model centered on direct collision risk. Furthermore, the final predictive 

collision risk maps were used to assess the collision risk of existing wind farms within the study area. 

During their movements along the coast, white-tailed eagles are also prone to cumulative effects of 

several wind farms. Hence, the movement trajectories of each eagle were used to estimate the 

cumulative collision risk based on the risk levels of each intersected wind farm.  

 

The resource selection revealed that white-tailed eagles were most likely to appear in sparsely 

vegetated, coastal lowlands. They also favored steep slopes, which aligns nicely with their 

exploitation of orographic uplift for soaring flight. The probability of flying at risk heights also 

increased in slopes, while the direct collision risk was more evenly distributed across the landscape. 

The total predicted collision risk based on all model results was notably higher in the steep coastal 

landscapes along the Norwegian fjords and declined rapidly with increasing topographic elevation. 

For the risk posed by each wind farm, the size had a considerable effect on total collision risk, which 

was expected. However, the findings also revealed that certain smaller wind farms were sited less 

effectively within preferable eagle habitats. In the cumulative collision risk assessment, the risk varied 

greatly between individuals, with certain individuals avoiding wind farms more effectively than 

others. Some individuals also avoided high risk wind farms more effectively, despite moving through 

the same number of wind farms in total.  
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Predictive collision risk modelling and cumulative risk assessments represents an advancement 

towards limiting the harmful effects of wind power. Facilitating the opportunity to analyze predicted 

collision risk over large areas can improve the effectiveness of strategic planning and site selection. 

Moreover, by assessing the collision risk in existing wind farms and their cumulative effects on white-

tailed eagles, additional site-specific mitigation strategies can be implemented as needed. If not 

addressed properly, the ecological implications of wind power can be extensive. However, these 

methods and findings can improve the knowledge base related to birdlife protective practices and 

future wind power developments in general.  
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1. Introduction 

 

Over the past few decades, wind power has become an increasingly competitive contributor in the 

global energy production. Wind power creates clean and emission-free energy outputs, limiting the 

overall greenhouse gas emissions from the energy sector (Abbasi et al., 2013; Vargas et al., 2019). 

As a result of enhanced technology and low production costs, the Intergovernmental Panel for Climate 

Change (IPCC) suggest that wind power will amount to 20 % of the global energy demand in the 

runup to 2050 (Abbasi et al., 2013). However, in the case of human activities and social 

developments, conflicts often arise in regards to ecological conservation interests (Young et al., 

2005).  Despite wind power's central role in phasing out the use of fossil fuels, it entails undisputed 

negative consequences for the functionality of ecosystems and poses a direct threat to a number of 

bird species (Heuck et al., 2019). The deployment of wind farms in natural areas has exceeded the 

speed of the development linked to studies of how strongly wind power affects bird life (Drewitt & 

Langston, 2006). This increases the need for further understanding of the negative impacts that can 

be used as a basis for future project developments.  

 

Among previous studies, there is a broad consensus that wind power have a negative impact on local 

raptor populations in the form of direct collision risk with rotating turbine blades and the towers 

themselves (Beston et al., 2016; Dahl et al., 2013; Drewitt & Langston, 2006; Heuck et al., 2019; 

Martínez et al., 2010; May et al., 2010; May et al., 2011). Moreover, the development of wind power 

can cause an extensive degradation of natural habitats, which is one of the main contributors to the 

fragmentation and destruction of key food and nesting biotopes (Beston et al., 2016; Heuck et al., 

2019). The wind farms can also rise a barrier effect, causing the birds to avoid areas with high turbine 

densities. This can extend the flight distance and increase the energy required to fly between 

important feeding, nesting, and roosting sites (Drewitt & Langston, 2006). In other words, the wind 

power's impact on bird life includes both direct and indirect negative effects, threatening the 

populations of several bird species.  

 

When studying the harmful effects of wind power development in relation to birdlife, the White-

tailed Eagle (Haliaeetus albicilla) is particularly favorable for risk modelling due to their 

vulnerability in the face of wind turbines (May et al., 2013). The White-tailed Eagle is the largest bird 

of prey in the European fauna, with a wingspan that often reaches 2.5 meters (Barth & Gjershaug, 
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2023). They are also known for their long life span with a generally low reproductive rate. Most 

individuals do not lay their first eggs until they are 5-6 years old, and only 1-2 eggs are usually laid 

per breeding season (Kroglund, 2022). In this way, white-tailed eagles can be particularly vulnerable 

to small and sudden rises in mortality rates, increasing the risk of local population size decline 

(Drewitt & Langston, 2006; Heuck et al., 2019). Hence, an increase in the development of wind farms 

can have a harmful effect on certain populations of white-tailed eagles. Furthermore, wide-ranging 

bird species, such as the White-tailed Eagle, are highly prone to cumulative effects of several wind 

power installations (Brabant et al., 2015; Drewitt & Langston, 2006; Vasilakis et al., 2017). GPS-

tracking records from the Norwegian Institute for Nature Research (NINA) have shown that young 

males can cover large areas over a short period (Stokmo, 2021), increasing the chances of movement 

patterns overlapping with several existing wind power sites. Wind farms located in migration routes 

are also known to increase collision risk (Kikuchi, 2008). Hence, the wide-ranging movements of 

white-tailed eagles along coastal habitats which are also favorable for wind power development, 

increase the spatial cumulative risk of collision. Therefore, with the use of GPS-data and spatial 

modelling, additional studies highlighting the harmful effects of existing wind farms are needed for 

accurate environmental impact assessments.  

 

To further stress their vulnerability, white-tailed eagles have also shown lack of behavioral responses 

to avoid high density wind turbine areas, increasing the risk of collision (Dahl et al., 2013; Grünkorn 

et al., 2017; Krone & Treu, 2018). However, a successful attempt was made in Scotland to drive 

golden eagles (Aquila chrysaetos) away from a wind farm by felling a nearby forestry plantation. This 

ensured that the overall loss of foraging habitats caused by the wind farm construction were 

minimized. Though it is worth noting that this behavioral change was only observed in a single 

breeding pair, limiting the certainty of whether this measure will have a transferable effect to other 

sites or species (Walker et al., 2005). In many cases, the risk of increased collision occurrences is not 

only caused by individual factors, but rather the synergy of several drivers. Heuck et al., (2019) stated 

that the risk of collision for white-tailed eagles increased with a higher density of wind turbines. 

Additionally, an amplified effect of the turbine density occurred when the turbines were placed in 

highly preferable habitats. The results also suggested that the interaction of habitat suitability and 

turbine density was a better predictor of collision risk than the interaction of nesting site densities and 

turbine densities (Heuck et al., 2019). This suggests that using habitat preference in combination with 

turbine locations is an effective method for highlighting areas of collision risk.  
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White-tailed eagles are prime examples of soaring raptors, by which their flight behavior mostly 

revolve around the use of upward air currents to gain height (Dahl et al., 2013; Spaar, 1997). This 

technique is highly effective in terms of energy use, especially for large raptors. By using alternate 

flight methods such as flapping, their heavy body mass will cause large increase in energy 

consumption, compared to soaring (Spaar, 1997). The soaring technique is also effective in 

maintaining flight altitudes with minimized energy consumption. Dahl et al., 2013 suggest that flight 

altitude is an important factor in the assessment of collision risk, as the altitudes are expected to 

change in proximity to wind turbines. Such behavioral changes increase the need to further assess the 

movement patterns in relation to wind farms, and subsequently propose effective mitigation 

measures. Moreover, by analyzing both the eagles’ habitat preferences and their flight altitudes in 

relation to turbine collision risk, their landscape of risk can be modelled and predicted over larger 

areas.   

 

There are several methods for modeling the spatially explicit collision risk for eagle populations. The 

use of direct observations from different vantage points is the method used in previous studies from 

Smøla wind farm (Dahl et al., 2013; May et al., 2010). This provides a wide range of location-specific 

activity data, including flight altitude, social behavior and how local weather condition affects flight 

behavior (Dahl et al., 2013; May et al., 2010). Although observational methods can provide accurate 

information for analyzing collision risk, these data are usually limited to specific wind power projects 

and does not include the eagles' wide-range movements. Observer data are also prone to uncertainties 

related to estimates of flight height and activity due to personal observation errors and lack of 

sufficient acuity skills (Madders & Whitfield, 2006). Therefore, tracking flight activity from GPS-

tagged individuals is a more effective method for modeling the landscape of risk and cumulative 

collision risk over larger areas, covering several wind power locations. Moreover, the development 

of wind farms in coastal regions also have a displacement effect on local eagle populations, driving 

them away from their traditional territories (Garvin et al., 2010; May et al., 2013). This may increase 

the hazards of encountering other wind farms along their displacement paths, possibly increasing the 

cumulative collision risk. Hence, modelling the landscape of risk for white-tailed eagles based on 

GPS-data can provide useful insight to how the risk accumulates depending on their movement 

patterns.  

 

This thesis assesses the spatial distribution of the predicted collision risk of white-tailed eagles with 

wind turbines, and how this risk can be predicted using GPS-data and spatial modelling frameworks. 
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The main research objective is to map the spatially explicit predicted collision risk for sub-adult 

white-tailed eagles across the landscape by combining the results of three predictive models. These 

models include the predicted probabilities of presence (resource selection), predicted probabilities of 

flying at risk heights, and a mathematical model highlighting direct collision risk. The second 

objective is to assess the collision risk of existing wind farms, and their subsequent cumulative 

collision risk effects for white-tailed eagles along their movement trajectories. This research intends 

to offer actionable insights that could guide the placement and design of future wind farms to mitigate 

the impact on white-tailed eagles, contributing to both renewable energy development and wildlife 

conservation.1 

 

2. Materials and methods 

2.1 Study area 

 

The modelling was conducted over the range of the GPS-tagged white-tailed eagles, from 

Kristiansund in the county of Møre of Romsdal (central Norway) to Båtsfjord in Finnmark (northern 

Norway) (Fig. 1). The tagging of nestling was carried out on the island of Smøla, which is home to 

one of the largest wind farms in Norway. Many sub-adult individuals have shown patterns of northern 

movements along the coast towards the tip of northern Norway. Along this stretch of around 1400 

kilometers, the dispersing individuals will pass several existing wind farms within a matrix of coastal 

and inland landscapes.  

 

 
1 This introduction is based on the mandatory thesis description written in the preparatory master’s course “MINA310 - Methods in 

Natural Sciences” (Halgunset, 2023). 
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2.2 Data collection 

2.2.1 GPS-data 

 

Between 2004 and 2017, NINA acquired an extensive tracking dataset of GPS-tagged white-tailed 

eagles fledged on the island of Smøla (Hanssen et al., 2020). The data show the spatially explicit 

distribution of individuals in the landscape as well as their activity. The GPS-trackers were fitted as 

back-packs on nestlings just prior fledging, and most were equipped with solar panels to charge the 

batteries. Hence, most locations were recorded between March and October due to the lack of solar 

radiation during the late autumn and winter (May et al., 2013). Moreover, the intervals at which 

Figure 1: Study area covering the entire central and northern Norway. The highlighted area represents Smøla 

archipelago, where the nestlings were tagged. 
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locations were registered also varied among the seasons, using short time intervals (< 1-3 hours) in 

the summer, 3-6 hours during autumn and spring, and up to 24 hour intervals during the winter 

(Nygård et al., 2010). The median tracking interval between two consecutive locations across all 

individuals was 15 minutes and 6 seconds. The lowest tracking interval was 39 seconds, while the 

highest was 24 hours. Flight altitude and flight speed data were also recorded for most tagged 

individuals, indicating whether the eagles were roosting/foraging or flying at the time of registration 

(Nygård et al., 2010). The GPS data have been used in previous collision risk studies at Smøla (May 

et al., 2011; Nygård et al., 2010). However, only the tracking data within Smøla wind farm was 

assessed, and the northern movement patterns were excluded. 

 

2.2.2 Environmental data 

 

The data needed for the analysis consisted in several types of environmental data, including general 

land cover and different types of topographic variables. The habitat categories used as explanatory 

variables were provided through Corine Land Cover data, available at the Norwegian Institute of 

Bioeconomy Research (NIBIO, 2024). The data consists of 44 different categories and constitutes a 

joint compilation of land cover maps from European countries. For the analysis in this thesis, the 

habitat categories were aggregated into more general and manageable categories, as shown in 

Appendix A. Moreover, a nationwide digital terrain model (DTM) in raster format was downloaded 

from Høydedata (Kartverket, 2023). The DTM was further used as input to generate three additional 

topographic raster maps containing the slope level and ruggedness of the terrain, and the topographic 

position index (TPI). These maps were generated using raster terrain algorithms in QGIS desktop 

version 3.28 (QGIS.org, 2024). The slope shows the level of steepness in the terrain, while the 

ruggedness shows the general level of unevenness. The TPI indicates weather a position is in a valley 

or at a hilltop. Wind power locations and wind speed data was provided by the public databases of 

The Norwegian Water Resources and Energy Directorate (NVE, 2024b). 

 

2.3 Data handling and preparation 

2.3.1 Data filtering 

 

The extensive raw dataset from NINA provided a significant number of eagle relocations of different 

quality. Considering that the GPS-transmitters were fitted on nestlings, large amounts of registrations 
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were made in the pre-fledging phase in the nest and in the post-fledging dependency phase (PFDP). 

This could bias the utilization distribution and cause inaccurate home range estimations. The PFDP 

is the period after fledging used for exploration and skill development near the natal site. The phase 

usually last between 1-2 months after fledging (Balotari-Chiebao et al., 2021), with certain 

individuals staying even longer (Hardey et al., 2006). Therefore, the first 100 days of tracking for 

each individual was removed from the dataset in this analysis, avoiding the territorial attachment to 

the nest during this phase. In addition, nesting adults were also excluded from the analysis due to 

their territorial attachments. Thus, only the wide-ranging and non-territorial sub-adults between 1-4 

years were included. The raw data also showed that certain individuals died or experienced 

disturbances in the GPS-tracking shortly after fledging, mostly within the range of 50-200 days. This 

is opposed to most of the individuals, for which the tracking ranged over several years. Therefore, 

individuals with less than 100 days of tracking and 500 relocations in total was removed, as these 

limited sample sizes may cause inaccurate home range estimations. The final count of actual 

relocations used for the analysis was 250 799 distributed among 34 individuals. The total relocation 

counts for each individual ranged from 631 to 43 799, with most individuals ranging between 1 000 

- 10 000 relocations. 

 

2.3.2 Home range estimation 

 

The home ranges for each individual eagle ID were estimated using the Brownian Bridge Movement 

Model (BBMM). The BBMM is a favorable approach in animal home range analyses as the 

estimations are based on the animal’s trajectories and considers the time elapsed between different 

relocations (Buchin et al., 2015). Is this way, the BBMM copes with issues related to temporal 

autocorrelation, which can occur in standard utilization distribution methods with the assumption of 

dependent observations. The BBMM assumes that the movement pattern between two consecutive 

locations is random (i.e. brownian), thus limiting the uncertainties related to irregular GPS-fixes 

(Buchin et al., 2015; Fischer et al., 2013). The home range estimations were conducted as an initial 

step of the resource selection modelling process, which is described in chapter 2.4. 34 different home-

range polygons were created using the “kernelbb” function from the “adehabitatHR” package 

(Calenge & Fortmann-Roe, 2023) in RStudio version 2023.12.1 (RStudio, 2015)  (see Appendix B). 

This version of RStudio was used for all programming tasks in this thesis.  
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2.4 Resource selection modelling 

 

A resource selection model was developed to obtain information of the habitat preferences of the 

white-tailed eagles. A total number of 539 250 locations were analyzed, of which 288 451 were 

random points (ca. 1.15 x actual relocations). These random points are called pseudo-absences and 

represent the areas that could be utilized within the home range of each eagle (i.e. the available 

habitat) (Barbet-Massin et al., 2012). A generalized linear mixed-effects model (GLMM) was fitted 

to the data using the “glmer” function from the “lme4” package (Bates et al., 2015). The response 

variable in the model was set as binomial, representing the presence (actual observation = 1) or 

absence (random point = 0) of eagles at a given point. Logistic regression was utilized to model these 

outcomes, providing a probabilistic framework suitable for predicting eagle occurrences based on 

spatial and environmental variables. The fixed predictor variables were categorical variables that 

included different aggregated land cover types (see Appendix A), and continuous variables that 

included elevation above sea level, slope level (in degrees), topographic position index (TPI) and 

distance to shoreline. Individual eagle IDs were set as random effect to cope with the non-

independence and possible intra-class correlation of the data (Bolker et al., 2008).  

 

The full resource selection model containing all variables was examined using the “dredge” function 

from the “MuMIn” package (Bartoń, 2023). This process breaks up the model and test all possible 

variable combinations, ranking the models by using the ΔAIC, with models with ΔAIC < 2.0 

considered as best (Burnham & Anderson, 2004). In some cases, the data of two or more predictive 

variables can have a linear relationship and explain the same type of variation. This is known as 

collinearity and may cause biased and non-representative models if not addressed (Hendrickx & 

Utrecht, 2018). The collinearity between the continuous predictive variables were analyzed using the 

Variance Inflation Factor (VIF) provided by the “car” package (Fox & Weisberg, 2019). The VIF 

explains the extent of the linear relationships between the predictor variables (Forthofer et al., 2007). 

In the global model “distance to shoreline” had some level of collinearity with the elevation variable, 

and distance to shoreline were not included the final model.  

 

The best model showing the predicted probabilities of eagle presence in all habitat categories was 

graphically presented using the “ggpredict” function from the “ggeffects” package (Lüdecke, 2018). 

A preference or avoidance of a particular habitat was inferred if the predictions were notably above 

or below the 50 percent expectation. Conversely, no preference or avoidance was inferred if the 
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confidence intervals of the predictions overlapped with the 50 percent mark. This indicates that the 

observed habitat use aligns with what would be expected by chance, signifying no significant 

deviation from random distribution. In the model, agricultural areas are set as the baseline against 

which other habitat categories are compared. The model automatically selects agricultural areas as 

the baseline because they come first alphabetically. Given that the initial model results inherently 

depend on the choice of the baseline, and to thoroughly understand the relative preferences or 

avoidances across all habitat categories, a post-hoc analysis was conducted. This analysis involved 

pairwise comparisons between the predicted probabilities of eagle presence in each habitat category. 

This was done by seeing whether the confidence interval of one category overlapped with the 

confidence interval of another after graphically presenting the best model. If no overlap was observed, 

the probability of the categories was significantly different from each other, and vice versa.  

 

The elevation variable explains the eagles’ elevation preferences, were a positive or negative value 

indicates whether eagle presence increases or diminishes with increasing altitude. The same concept 

applies for the slope variable with increasing steepness in the terrain. Lastly, a positive or negative 

value for the TPI variable indicates whether eagle presence is more likely on hilltops or in valleys, 

respectively. 

 

2.5 Flight risk modelling 

 

A logistic GLMM was also fitted to the flight altitudes to map out the areas where the eagles are 

flying at risk heights. The flight altitudes for each relocation were obtained by subtracting the altitude 

from the transmitter with the registered elevation level from the digital terrain model (DTM). The 

response variable was set to whether the eagles were flying at risk heights vs. flying at non-risk 

heights in relation to onshore wind turbines. The eagles were defined as “in flight” with an 

instantaneous speed at ≥ 1 km/h at the time of registration (May et al., 2011). Moreover, some 

individuals may have been soaring against strong wind currents, measuring no speed even though 

they are in flight. Therefore, the eagles were also determined as in flight at speeds < 1 km/h at altitudes 

above 50 meters. The altitude limit was set to avoid the possibility of individuals roosting or perching 

in trees.    

 



10 
 

The optimal flying altitudes associated with increased collision risk were found by using the average 

measurements of existing wind turbines in Norway. The tower height of most commercially operative 

Norwegian wind turbines are between 80 – 145 meters, while the rotor blade diameter stretches 

between 60 – 80 meters (NVE, 2024a). Thus, the radius of the rotor blade diameter can be added and 

subtracted from the tower heights for the smallest and largest turbines. This will result in the 

maximum and minimum altitudes of the rotor swept zones (RSZ), respectively. As a results, based 

on the average measurement Norwegian wind turbines, the eagles were determined to fly at risk 

altitudes between 50 – 185 meters. Observations that fell within this range of risky altitudes were 

registered with response = 1, while those flying above or below were registered with response = 0.  

 

For this model, the predictor variables used was similar to those in the full resource selection model. 

“Distance to shoreline” was again excluded due to collinearity with the elevation variable. However, 

a fourth continuous variable showing the ruggedness of the terrain was also included in the global 

flight risk model but was excluded due to collinearity with the slope variable. To evaluate habitat 

associations with risk, post-hoc pairwise comparisons were again conducted to assess differences in 

probabilities of flying at risk heights, based on whether confidence intervals overlapped in the model 

outputs. For elevation and slope, positive or negative estimates suggest that the predicted probabilities 

of an eagle flying at risk heights increases or decreases as the elevation and terrain steepness 

increases. Lastly, for the TPI, a positive estimate suggest that eagles are more likely to fly at risk 

heights at hilltops. With a negative estimate, the same applies for valleys.  

 

2.6 Collision risk model 

 

The final model used to calculate the total landscape-based risk was a collision risk model based on 

the mathematical approach used in Tucker (1996). The model calculated the predicted probabilities 

of direct turbine collision across the landscape based on the following technical, biological, and 

environmental parameters: 

- Turbine data: Height, number of rotors blades, rotor blade length, pitch, axial induction 

factor and max chord.  

- Gears: List of wind speeds with corresponding turbine gears. 

- Bird data: Average flight speed and flight direction (angle of approach in degrees). 
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- Bird shape: Wingspan and length. 

- Wind data: Nationwide wind speed raster map, with each pixel containing an average wind 

speed at 80 meters above sea level.  

 

The collision risk is calculated by comparing the time the eagles uses to fly through the rotor swept 

zone (RSZ), and the time is takes the rotor blades to complete one full circular motion (Masden & 

Cook, 2016; Tucker, 1996). The turbine data and gears are based on the average measures and 

mechanics of Norwegian wind turbines, while the wind data were obtained from a nationwide wind 

speed map at 80 meters above ground level. The bird data were gathered from the extensive GPS-

dataset from NINA. By incorporating all parameters, the collision risk was calculated across the 

landscape as a function of the angle of approach, ranging from -180 to 180 degrees. This allowed the 

model to account for each possible flight direction relative to the wind turbines, thereby achieving a 

collision risk factor for each possible angle. This is important, as the probabilities of collision is highly 

influenced by the flight angle in relation to the turbine (Holmstroma et al., 2011). The model also 

accounted for all possible wind speed directions. Lastly, the average predicted collision probability 

was calculated for all the different wind speeds across the landscape (Tucker, 1996). The visual 

presentation of the collision risk model is shown in chapter 3.3.3. 

 

2.7 Predictive risk mapping  

 

The best models for resource selection and flight altitude were graphically presented using the 

“raster” package (Hijmans, 2023) in RStudio. Creating predictions of animal distributions and other 

factors across the landscape is an important tool in biodiversity conservation strategies (Morris et al., 

2016). It has also been previously used in understanding the effects of human activity on different 

animal species and their ecology (Hebblewhite & Merrill, 2008; Merkle et al., 2011). In this study, 

each raster layer used for data sampling in the model prediction was used to create a joint data frame 

of pixels. A crucial part was making sure that all the input layers had the exact same dimensions and 

extent, and the layer names matched the names of the predictor variables in the best predictive models. 

Furthermore, predictive maps were created by combining the results of the best models with the data 

frame. By using the integrated R-function “predict”, each pixel was given a value of predicted eagle 

presence and probability of flying at risk height based on all predictor variables. These results were 

extrapolated to the entire study area (central and northern Norway), creating two separate maps 
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showing areas of high to low probability of presence and probability of flying at risky flight altitudes. 

The dimensions used for the resource selection and flight risk maps was 17 203 X by 20 850 Y, and 

despite the wide-ranging outreach, the maps were highly detailed with a pixel size of 50 x 50 meters. 

This means that each pixel covers an area of only 50 meters in length and width. The total pixel count 

for the maps was 358 682 550, given the dimensions.  

 

The direct collision risk model was graphically presented by running the model on each separate pixel 

in the wind speed raster map. In this way, the model used all input parameters mentioned in chapter 

2.6, and a different wind speed given the value in each pixel. This resulted in a large scale collision 

risk map with each pixel representing the collision risk factor as an average of every angle of 

approach. Furthermore, the collision risk map was multiplied with two previous predictive maps. This 

process combined the existing risk levels based on environmental variables, and the turbine collision 

risk levels across the landscape by multiplying each raster pixel with each other. The collision risk 

map had a large pixel size of 2415 x 2415 meters due to the original scale of the input wind speed 

map. Hence, the collision risk map was resampled to match the dimensions and pixel size of the two 

previous predictive maps before multiplication could take place. For this process, the “resample” 

function from the “raster” package was used (Hijmans, 2023). The multiplication of the three separate 

predictive maps resulted in a new final map showing the distribution of the total predicted collision 

risk across the landscape based on all model results (i.e. the eagles’ landscape of risk). The map shares 

the scale and resolution of the resource selection and flight risk maps and is presented in chapter 

3.3.4.  

 

2.8 Collision risk by existing wind farms 

 

The collision risk levels for each existing wind farm within the study area was assessed in two 

different ways. In the first approach, the map representing the eagles’ landscape of risk was overlayed 

with the locations of existing wind turbines in QGIS. The total risk values were extracted for each 

turbine in the study area using the QGIS algorithm “sample raster values” and summed across the 

existing wind farms. The risk levels for each wind farm were then presented as risk per megawatt 

installed capacity. The second approach was more comprehensive, and utilized the existing link 

between resource selection and population density (Bourgeron et al., 1999). Here, the total risk per 

wind farm was calculated as a proportion (in percentages) of the total population across the study area 
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which is expected to collide at any given point in time. This was done by changing the predicted 

presence map by dividing the presence value in each pixel with the sum of probabilities across all 

pixels in the map. In this way, the presence probabilities in each pixel were normalized into values 

representing a proportion of the entire population across the study area, where the sum of predicted 

presence across all pixels amounted to 1 (i.e. 100 %). The normalized presence probabilities were 

multiplied by the flight risk map and the direct collision risk map like the process described in chapter 

2.7. This resulted in a new collision risk map, in which each pixel represented a proportion of the 

total population across study area that are expected to collide at any given point in time. These values 

were extracted for each turbine in the study area and summed across the existing wind farms.  

 

2.9 Cumulative collision risk per individual 

 

The cumulative collision risk for each individual eagle in the analysis was calculated by using the 

eagle’s movements trajectories from the BBMM. The trajectories were used to map the areas where 

the movement patterns intersected with existing wind farm sites. This method has previously been 

used in the assessment of flight path changes of large-bodied birds in relation to onshore wind farm 

constructions (Therkildsen et al., 2021). Next, the number of different wind farms intersected for each 

eagle were counted, as well as the total amount of wind farm intersections for each eagle. Lastly, the 

collision risk levels for the intersected wind farms were summed across the individual movement 

trajectories, resulting in the cumulative risk of collision for each individual. Here, the average 

collision risk per turbine was used by dividing the total risk per wind farm with the number of 

turbines. The total risk per wind farm was obtained from the final collision risk map presented in 

chapter 3.3.4. 

 

3. Results 

3.1 Resource selection modelling 

 

The best (most parsimonious) predictive resource selection model based on the ΔAIC showed clear 

differences in the habitat preferences of the eagles. This model included all categorical and continuous 

variables, except “distance to shoreline”. The parameter estimates are presented in Table 1. The eagles 

mainly preferred open and sparsely vegetated areas. The probability of a given point being an actual  
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eagle relocation is higher in shrublands, and areas associated with bare rock and scarce vegetation, 

compared to the expectation (Fig. 2). The probability of eagle presence in wetlands was also 

marginally higher than the expectation, indicating a slight selection preference. However, the 

confidence interval overlaps with the 50 percent threshold line, suggesting that the preference is not 

statistically significant and not significantly different from chance (Fig. 2). In contrast, eagles avoided 

urban areas and human infrastructure. The predicted probability of eagle presence in the urban habitat 

category is located well below the expectation, meaning that eagles use the urban category 

significantly less than the availability (avoidance). This result is also supported by the small and non-

overlapping confidence interval. The predicted probability of eagle presence in agricultural areas was 

also significantly less than the expectation, yet still substantially higher than in urban areas. The 

eagles also used the forests and both water categories significantly less than the availability (Fig. 2). 

Moreover, there was significant differences in predicted probabilities between all the categories above 

the threshold line (including wetland) and those below, due to the non-overlapping confidence 

intervals (Fig. 2). There were also significant differences between agriculture, marine waters, and 

urban areas. The urban habitat category also remained the only category significantly different from 

all other categories.   

Table 1: Parameter estimates from the best fitted model. Logistic regression with eagle observations vs random points 

as function of  the different categorical and continuous predictive variables (agriculture as intercept). 

Fixed effects Estimate Std. error P-value

Intercept -0.720 0.110 < 0.001 ***

Bare rock / Scarce vegetation 1.048 0.018 < 0.001 ***

Forests -0.353 0.020 < 0.001 ***

Inland waters -0.432 0.047 < 0.001 ***

Marine waters -0.708 0.016 < 0.001 ***

Shrubland 1.126 0.021 < 0.001 ***

Urban -1.957 0.074 < 0.001 ***

Wetlands 0.920 0.019 < 0.001 ***

Elevation -1.472 0.009 < 0.001 ***

Slope 0.762 0.006 < 0.001 ***

TPI 0.247 0.004 < 0.001 ***
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The negative estimate for elevation shows a clear selection towards flat and more uniform areas, and 

avoidance of mountainous areas and areas of substantial topographic variation (Table 1). The 

probability of eagle presence is decreased with increasing altitude, meaning that eagle presence 

becomes less likely as the altitude above sea level increases (Fig. 3). The opposite was observed for 

slope, as the predicted probability of eagle presence increased with increasing degree of slope in the 

landscape. The eagles also selected areas with a positive TPI, meaning that hilltops were more 

favorable than valley-shaped areas (Fig. 3). The visual presentation of the best resource selection 

model is shown in chapter 3.3.1. 

Figure 2: Predicted probabilities of eagle presence (response = 1), with 95 % confidence intervals, at different 

aggregated habitat categories. The red line represents the expectation at 50 percent. Predicted probabilities above or 

below the line indicates a selection towards and against the habitat category, respectively.  
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3.2 Flight risk modelling 

 

The best model estimating the predicted probabilities of eagles flying at risk heights included the 

same predictor variables as the best resource selection model, with distance to shoreline and terrain 

ruggedness being excluded. The parameter estimates for the categorical and continuous variables are 

presented in Table 2.  

 

Figure 3: Predicted probabilities of eagle presence (response = 1), with 95 % confidence intervals, as function of 

elevation above sea level, terrain steepness and topographic position index.   
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The highest probabilities of flying at risk heights were observed over forests and inland waters, which 

were significantly higher than those observed over bare rock / scarce vegetation, shrubland, marine 

waters, and wetlands (Fig. 4). The eagles were least likely to fly at risk heights over bare rock/scarce 

vegetation, shrublands, and marine waters. The confidence intervals for these cover types were also 

relatively narrow, indicating accurate predictions. Moreover, the probability of flying at risk heights 

in shrublands was nearly the same as over marine waters and bare rock / scarce vegetation. In 

comparison, the risk was slightly higher when flying over agricultural areas and wetlands. Flying 

over urban areas was, on average, associated with a risk similar to that of agriculture, although these 

predictions came with considerable uncertainty due to the wide confidence intervals (Fig. 4).  

Table 2: Parameter estimates from the best fitted flight risk model. Logistic regression with flying at risk heights (50 – 

185 m) vs flying below or above as function of the different categorical and continuous predictive variables (agriculture 

as intercept). 

 
Fixed effects Estimate Std. error P-value

Intercept -0.736 0.087 < 0.001 ***

Bare rock / Scarce vegetation -0.283 0.058 < 0.001 ***

Forests 0.266 0.062 < 0.001 ***

Inland waters 0.411 0.126 0.0011 **

Marine waters -0.262 0.058 < 0.001 ***

Shrubland -0.165 0.066 0.0120 *

Urban -0.013 0.374 0.9724

Wetlands -0.035 0.062 0.5709

Elevation 0.106 0.013 < 0.001 ***

Slope 0.336 0.014 < 0.001 ***

TPI -0.230 0.011 < 0.001 ***



18 
 

 

For the continuous variables, the predicted probability of an eagle flying at risk height was increased 

with increasing elevation above sea level and terrain steepness (Fig. 5). In other words, the eagles 

were more likely to fly at risk heights in mountainous areas and in areas characterized by steep slopes. 

The predicted probability was decreased with increasing TPI, suggesting that eagles were more likely 

to fly at risk heights in valleys than on hilltops (Fig. 5). The visual representation of the best flight 

risk model is shown in chapter 3.3.2. 

 

Figure 4: Predicted probabilities of eagles flying as risk heights (response = 1), with 95 % confidence intervals at 

different aggregated habitat types. Overlapping confidence intervals suggest that the probability in these categories 

is not significantly different from each other.   
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Figure 5: Predicted probabilities of an eagle flying at risk heights (response = 1), with 95 % confidence intervals, as 

function of elevation above sea level, terrain steepness and topographic position index (TPI). 
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3.3 Predictive maps  

3.3.1 Resource selection model 

 

The visual presentation of the resource selection model shows the distinctive preferences towards 

sparsely vegetated coastal habitats and represent a gradient from coastal to inland landscapes. The 

probability levels are presented on a continuous scale due to the wide range of data in the model 

results. This allowed the variability in the data to be well presented with equally large ranges (Fig. 

6).  

 

Figure 6: Visual presentation of the best resource selection model, covering the northern movement patterns of the all 

the individuals included in the model. The color-range is shown at a continuous scale from red to green, indicating low 

to high preference, respectively. 
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3.3.2 Flight risk model 

 

The visual representation of the flight risk model clearly depicts that the environmental variables 

increasing the risk of flying at risk heights are mostly very different from those increasing eagle 

presence in general (Fig. 7). The variation in the probability levels is also relatively low compared to 

the resource selection map. Therefore, the data is presented at a quantile scale, where each data range 

contains the same number of values. This helps to visually highlight the differences better within less 

variable data.  

 

 

Figure 7: Visual presentation of the best model of the predicted probabilities of white-tailed eagles flying at risk 

heights. The color-range is presented as quantiles from green to red, indicating low to high probability, respectively. 
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3.3.3 Collision risk model 

 

The collision risk model suggests that the risk of colliding with a wind turbine is evenly distributed 

across the landscape (Fig. 8). The general variability in risk levels is also relatively low, only ranging 

from about 20 to 30 % mostly due to the changes in average speeds from pixel to pixel. Thus, the 

data are presented in quantile scale like the flight risk model.    

 

 

Figure 8: Visual presentation of the direct collision risk model, given all technical, environmental, and biological input 

parameters. The color-range is presented as quantiles from green to red, indicating low to high probability, 

respectively 
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3.3.4 Combined landscape of risk  

 

By multiplying the predictive values in all the three previous maps combined, the total collision risk 

based on all environmental, biological, and technical parameters was visually presented across the 

landscape. Unsurprisingly, the total collision risk was strongly correlated with the predicted 

probability of eagle presence and increased towards coastal lowland regions (Fig. 9). This is caused 

by the higher probability values in the resource selection map, which have a substantial effect on the 

total collision risk. This is particularly evident in the areas around the fjords, which is characterized 

by steep terrain. The map is presented at a quantile scale, equal the previous maps.  

Figure 9: Visual presentation of the eagles’ predicted landscape of risk as percentages, based on the model results of 

the resource selection, flight risk and direct collision risk. The color-range is presented as quantiles from green to red, 

indicating lower to higher probability, respectively. 
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3.4 Collision risk by existing wind farms 

 

Here, the risk levels for each wind farm are first presented as the proportion of the total population 

across the study area that are expected to collide at any given point in time (Fig. 10). Note that the 

overall low proportion levels per wind farm is linked to the immense scale and resolution of the 

resource selection map. Each pixel represents a proportion of the total population across the entire 

study area, which amounts to 100 % when summed across all pixels. There was great variation in the 

predicted risk levels, with most high-risk wind farms being in the southern part of the study area. It 

is worth noting that wind farms with a high number of turbines usually have higher total collision 

risk, even though some smaller wind farms might have a higher average risk. The greatest predicted 

Figure 10: Visual presentation of the total risk posed by existing wind farms within the study area. The risk levels 

represent the proportion of the total population across the study area that are expected to collide at any given point in 

time. 
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risk is found at Smøla wind farm (1). It consists of 68 turbines, all of which with a relatively high 

collision risk, resulting in a high wind farm scaled risk. This differs from other wind farms of equal 

magnitude, such as Øyfjellet wind farm (2). Based on the model results, most of the 72 turbines have 

little to no predicted risk, resulting in a significantly lower total collision risk (Fig. 10). Further north, 

the general predicted risk of collision among the wind farms is low. However, the collision risk across 

several wind farms drastically changes when the risk levels were presented per megawatt installed 

capacity (Fig. 11). Some of the smaller wind farms with a low total collision risk have a higher 

collision risk relative to its size. On the other hand, some of the larger wind farms with a high total 

collision risk had a considerably lower risk compared to its size and production contribution. 

Figure 11: Visual presentation of the total collision risk per wind farm, shown as total risk per megawatt (MW) 

installed capacity. 



26 
 

3.5 Cumulative collision risk per individual 

In the cumulative risk assessment, the movement trajectories showed that all the eagles included in 

the analysis moved through at least one wind farm throughout the tracking periods (Fig. 12). 

However, there was a relatively high level of variation among individuals. Nine individuals moved 

through ten or more different wind farms, while six individuals flew through three or less. The average 

number of unique wind farms intersected per eagle was 6.62. Most of the northern movements took 

place in the spring and decreased during the summer.  

 

The total number of wind farm intersections was also higher than the number of unique wind farms 

intersected for most individuals (Fig. 13). This suggests that most eagles intersected at least one wind 

farm more than once, increasing the cumulative risk of collision. For instance, ID 83231 intersected 

seven unique wind farms through the tracking period but had a total of 12 intersections in total.  

 

Figure 12: The number of different wind farms intersected per individual. 
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Based on the collision risk levels of each wind farm and the total numbers of wind farms intersected, 

the eagles were facing different levels of cumulative collision risk along their movement paths (Fig. 

14). Unsurprisingly, the cumulative collision risk is strongly correlated with the number of intersected 

wind farms. However, there were some notable differences where certain individuals faced a lower 

cumulative collision risk despite intersecting the same number of unique wind farms and intersections 

in total. This suggests that some individuals avoided the high-risk wind farms more effectively. ID 

33337 and 183225 was two of the least risk exposed individuals relative to the number of different 

wind farms intersected (8). On the other hand, ID 33340 intersected the same amount of different 

wind farms but moved through at least one wind farm more than once during the tracking period. 

This resulted in a substantially higher cumulative risk.  

 

Figure 13: The number of wind farm intersections in total, independent of unique wind farms. The order of eagle 

IDs on the x-axis is equal to figure 12.  



28 
 

 

Even though there are some variations in both wind farm intersection (unique and total) and 

cumulative collision risk, it is worth noting that there were also variations in the extents of the 

movement patterns. Some eagles moved north-south several times while others only completed one 

trip. Some eagles also stayed somewhat closer to their natal area at the island of Smøla relative to 

others, only moving about 100-200 km. The differences in the tracking period also varied between 

approximately 6 months to 3.5 years between the individuals, which naturally will have a significant 

effect on the differences in total cumulative collision risk.  

 

 

 

 

Figure 14: Cumulative risk of collision for each eagle along their movement trajectories. The values represent 

the cumulative risk based on the average risk per turbine in the specific wind farms intersected by the eagles. 

The order of eagle IDs on the x-axis is equal to the two previous figures.  
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4. Discussion 

 

4.1 Interpretation and comparison with previous research 

4.1.1 Resource selection modelling 

 

In this thesis, the landscape of risk for white-tailed eagles was presented based on the model results 

of their resource selection, risk flight height and direct turbine collision risk. These results were 

further examined to estimate the collision risk of existing wind farms, and the cumulative risk for 

each tracked individual. The resource selection model suggested that sub-adult eagles are more likely 

to be found in uninhabited lowland regions along the coast with little vegetation, similar to findings 

in previous studies (Balotari-Chiebao et al., 2018; Balotari-Chiebao et al., 2021; May et al., 2013; 

May et al., 2021; Tikkanen et al., 2018). The eagles were also likely to appear in areas with high 

terrain steepness, which aligns nicely with the species flight behavior (Hanssen et al., 2020). Given 

their commonly used soaring flight behavior, white-tailed eagles are often attracted to orographic 

updrafts (Hanssen et al., 2020). These updrafts occur when wind currents are lifted vertically by steep 

terrain and are commonly used by soaring raptors for energy-efficient altitude gains (Bohrer et al., 

2012). This could be the main reason why the eagles preferred these areas. This could also be the 

reason why eagles preferred coastal landscapes, as the topography along the Norwegian coast often 

gets steep very quickly.  

 

When modelling these movement data, is worth noting that a large proportion of the GPS registrations 

in this analysis are from around the Smøla archipelago, where the transmitters were fitted to the 

nestlings. As a result, the eagles may be influenced by locally adapted habitat preferences within this 

specific population. In other words, the data do not necessarily represent the habitat preferences of 

white-tailed eagles in general. Nevertheless, the preferences for the different habitat categories 

coincide very well with previous studies elsewhere. This includes a preference for wetlands and bare 

rock, and an avoidance towards agriculture, urban areas, and waterbodies (Balotari-Chiebao et al., 

2021; May et al., 2013; Radović & Mikuska, 2009; Tikkanen et al., 2018). Even though both marine 

and inland waters are important hunting grounds for white-tailed eagles (Evans et al., 2010), the 

avoidance of waterbodies is most likely linked to their typical hunting strategies. White-tailed eagles 

are known as “sit-and-wait” foragers, which minimizes the need for persistent flight activity, and 

greatly reduces the time spent on aerial hunting over waterbodies (Nadjafzadeh et al., 2015; Olsen et 
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al., 2013). In this way, the eagles spend little time flying over water, which might explain the results 

suggesting avoidance of these habitats.  

 

4.1.2 Flight risk modelling 

 

A flight risk model was also conducted, showing the predicted probabilities of an eagle flying at risk 

height (50 – 185 m). Here, other environmental variables came into play, showing little correlation 

with the results of the resource selection model. Eagles were more likely to fly at risk heights in higher 

altitude areas, inland waters, and forests, where they are less likely to appear. This contributes to limit 

the overall risk of collision in the most preferable habitats. However, a higher probability of eagles 

flying at risk heights over forest are expected, considering that they need to fly over the treetops. This 

increases the risk of reaching the collision risk zone (50 – 185 m). The only predictor standing out 

for both high probability of eagle presence and increased probability of flying at risk heights is slope. 

Bohrer et al. (2012) suggest that golden eagles use the orographic uplifts extensively for migration, 

and that these uplifts could be affected by the construction of wind turbines at the mountain ridges. 

After inspection of the turbine placements in Norwegian wind farms, many of the outermost placed 

turbines are located relatively close to steep slopes. This could increase the collision risk, even though 

the turbines are not placed directly in the slopes. Moreover, there are uncertainties related to the eagles 

behavioral responses in the face of wind turbines, with some studies suggesting that there are some 

signs of avoidance behavior (Hull & Muir, 2013; Johnston et al., 2014; Therkildsen et al., 2021), 

while others suggest no avoidance (Dahl et al., 2013; Grünkorn et al., 2017; Krone & Treu, 2018). 

Regardless, under the assumptions of no avoidance, the collision risk is likely to be higher in steep 

areas with turbine placements on the mountain ridges above.  

 

4.1.3 Collision risk modelling 

 

Given their widely used soaring flight behavior, white-tailed eagles are likely to be attracted by 

turbulent wind masses, regardless of origin (Spaar, 1997; Ueta & Fukuda, 2010). This claim is 

supported by the fact that there is an increased probability of flights occurring within the rotor-swept 

zone (RSZ), where air currents are drastically changed (Dahl et al., 2013). Unsurprisingly, the 

collision risk for white-tailed eagles is also highly associated with the number of flights withing the 

RSZ (May et al., 2010; May et al., 2011). Therefore, use of a collision risk model based on both 
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technical, biological, and environmental variables is unquestionably a crucial part of a total collision 

risk assessment. The model from Tucker (1996) incorporates realistic parameters which might be 

easily worked around through rough assumptions in other collision risk studies. The model in May et 

al. (2010) assumed that the eagles always approached the turbines by upwind or downwind, ignoring 

the possible effects of crosswind approaches. Therefore, by accounting for all possible wind speed 

directions, the model from Tucker (1996) is likely to provide a more realistic description of the direct 

collision risk. Moreover, the Tucker-model excludes assumptions of possible turbine avoidance 

behavior (Masden & Cook, 2016), which is likely to limit uncertainties. This becomes particularly 

clear when the discrepancies linked to whether eagles practice avoidance behavior at all in the face 

of wind turbines are considered. However, despite the realistic methodology, it is worth noting that 

this model also has its limitations, which is further described in chapter 4.4.  

 

4.2 Collision risk findings  

 

The total risk levels associated with each wind farm was strongly linked to the total number of 

turbines, which is expected. In other words, larger wind farms were usually associated with a higher 

collision risk, simply due to the magnitude of the installations. This implies that a large-scale wind 

farm in a low collision risk area will usually have a higher total collision risk compared to a smaller 

wind farm in a high risk area. As a result, the lower overall collision risk in northern wind farms is 

likely linked to the fact that these wind farms have a lower average number of turbines, compared to 

those in the south. Nevertheless, the model results suggest that many of these low total risk wind 

farms have been poorly sited, often located within preferable eagle habitats. As a result, these wind 

farms have a substantially higher collision risk per MW installed capacity, compared to the total risk. 

These findings match the results of May et al. (2021), who found that smaller wind farms were on 

average sited less effectively with a higher impact per installed capacity. 

 

For some of the larger wind farms, minimum risk with maximum production has been achieved to a 

greater extent, indicated by the low risk per MW compared to the total risk. This suggest that these 

wind farms have been more effectively sited in less preferable and low collision risk habitats. May et 

al. (2021) found similar results, where larger wind farms had greater total impact of birdlife on 

average but were more effectively sited (indicated by a lower impact per installed capacity). As a 

result, the collision risk per MW installed provides a good indication of the quality of the impact 
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assessment and the use of preventive measures when these wind farms were sited. It also gives the 

decision makers an opportunity to assess the need for preventive measures in future developments in 

similar landscapes. For the variation in collision risk across wind farms, elevation was especially 

important, as the probability of eagle presence drastically decreased with increasing altitude. Ten 

wind farms are located above 400 meters, where eagle presence was very scarce. All of which had a 

relatively low collision risk per MW installed capacity, even though most of them were located on 

highly preferable habitat types. This clearly indicates that elevation explains a larger amount of 

variation in eagle presence than the habitat categories, which in turn has a substantial effect on 

collision risk. The eagles also had a lower probability of flying at risk heights on hilltops compared 

to valleys, which could contribute to the overall lower collision risk in more elevated wind farm 

locations.  

 

When assessing the collision risk for each individual eagle, there was great variability in both the 

number of wind farm crossings (to unique wind farms and in total) and the subsequent cumulative 

collision risk. This variation can be influenced by several factors, including the extent of the northern 

movement patterns. Longer and more frequent movements would obviously have increased the 

number of possible wind farm intersections compared to the more limited movement patterns. First 

and foremost, this variation in movement patterns is most likely strongly linked to the extent of the 

tracking intervals between each individual. However, given the fact that eagles can travel long 

distances over short periods, some of the variation could also be explained by differences in individual 

response in the face of wind power installations. In this study, the nestling tagging was carried in and 

around Smøla wind farm, which is known to have a displacement effect on the local population (May 

et al., 2013). As a result, some variation in movement patterns may be a consequence of how different 

individuals respond to the displacement, if they respond at all. The movement differences could also 

be largely explained by how the individuals respond to ecological and demographic variables, 

including population density, prey availability, local weather conditions and general habitat quality.  

 

4.3 Implications for future wind power development 

4.3.1 Predictive mapping in risk assessment and optimal siting 

 

The process of mapping the predicted collision risks across the landscape can serve as an important 

tool for future wind farm development. By providing a spatially explicit visualization of predicted 

collision risk, the identification of high risk vs. low risk areas will be optimized. In this way, the 
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predictive maps can allow for more effective onshore wind power site selection, limiting the collision 

risk. For instance, as the probability of eagle presence (and subsequent collision risk) rapidly 

decreases with increasing altitude, siting new wind farms at higher altitude areas might be optimal 

for the preservation of white-tailed eagle populations. Predictive collision risk maps can also be an 

important tool in streamlining the process of conducting comprehensive impact assessments linked 

to new wind power installations. The effectiveness and quality of environmental impact assessments 

can be heavily contingent on site-specific data (Ross & Evans, 2002; Tarazona, 2014). However, as 

these data can be difficult to obtain, researchers must sometimes settle for environmental data at a 

broader scale, limiting the accuracy of the assessment (Bourgeron et al., 1999; Ross & Evans, 2002; 

Walston et al., 2012). The predictive risk map provides localized data on collision risk, allowing for 

more precise assessments in relation to the impacts on white-tailed eagle populations. The map can 

also help to distinguish potential and undesirable project areas for wind power at an early stage in the 

licensing process, without the need for extensive field work in advance.  

 

The collision risk visualizations are not only useful for selecting optimal low-risk wind power 

locations but can also be used for optimal placement of specific turbines within a project. The pixel 

size of only 50 x 50 meters allows for highly specific evaluations, encompassing the environmental 

variation over very short distances. In this way, the placement of turbines within a specific project 

can be assessed based on the local variation in collision risk. For instance, the model results suggests 

that turbines should be avoided close to steep slopes, as the eagles use the orographic uplift for their 

soaring flight (Hanssen et al., 2020). Based on the comprehensiveness, scale, and resolution of the 

risk map, developers and policy makers can be better suited to make informed decisions, limiting the 

harmful effects on white-tailed eagle populations. 

 

4.3.2 Cumulative effects and mitigation measures 

 

When assessing collision risk for bird species, the cumulative impacts are essential for understanding 

the long-term effects of wind power installations (Brabant et al., 2015; Vasilakis et al., 2017). New 

wind farms are expected to be functionally and economically operative for at least 25 years (NVE, 

2023), suggesting that the potential cumulative collision risk effects over the next few decades might 

be substantial. Moreover, the Norwegian Energy Commission’s study report from 2023 proposes an 

upscale in the current development of wind power installations to meet the European energy 
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requirements (Andresen et al., 2023). These ambitions require a significant foundation of knowledge 

related to the long-term cumulative collision risk effect for white-tailed eagles. The cumulative 

impacts are often neglected in environmental impact assessments, which can cause large deviations 

in observed vs actual degree of influence (Burris & Canter, 1993; Cooper & Sheate, 2002; Kay et al., 

2010). Even though the collision risk for one wind farm might be very low, the overall impact across 

other existing wind farms will increase along the movement paths. Therefore, by expanding the 

horizon of impact to include the risk posed by several wind farms over an extended period, a more 

holistic risk evaluation is achieved. This can also improve the understanding of how these impacts 

will influence population dynamics and simplifies the process of implementing useful mitigation 

strategies.  

 

The development of wind power is often characterized by a trade-off between environmental 

considerations and the magnitude of the production potential (Eichhorn & Drechsler, 2010). As a 

result, the implementation of effective mitigation strategies is a crucial part of limiting the collision 

risk (Garcia-Rosa & Tande, 2023). This is particularly important if the initial attempt to avoid high 

risk areas is inevitable. Given the substantial variation in both collision risk between wind farms and 

the subsequent cumulative collision risk for each individual eagle, combining different types of site-

specific measures at each wind farm may be the most effective measure. This approach is also 

supported by previous findings (Garcia-Rosa & Tande, 2023; Marques et al., 2014). One of these 

measures could be to increase the visibility of the turbines by painting one of the rotor blades black, 

which is known to reduce collision risk (May et al., 2020). Moreover, the seasonal trend in the 

northern movement patterns can provide insightful information related to mitigation efforts in 

existing wind farms. By knowing when the eagles are expected to arrive, wind farm operations 

managers can implement temporal adjustments to the operation. This includes limiting or shutting 

down the production temporarily (Goodwin, 2018). Although this measure may prove effective in 

minimizing cumulative collision risk if used at several sites, it can also limit the energy production 

significantly (May et al., 2015). However, a new concept called SKARV could show a great potential 

in reducing collision risk by predicting flight trajectories with advanced detection cameras. In the 

event of a predicted collision, the rotor speed is only changed slightly based on the trajectory, and the 

production loss is minimized (Garcia-Rosa & Tande, 2023). If introduced and proven effective in 

several wind farms, this technology might help maintaining a healthy balance between the cumulative 

collision effects and sufficient production levels.  
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4.4 Limitations and further research  

 

Although this study is based on an extensive dataset on eagle movement and techniques of spatial 

modelling, some limitation and possibilities for further research needs to be addressed. Regarding the 

data, the post-fledging dependency phase was removed for all individuals to limit the territorial 

attachment to the natal area and maximize the likelihood of northern movements. This could have a 

significant effect on the cumulative collision risk, as white-tailed eagles are likely to be more prone 

to turbine collisions in the post-fledging dependency phase (PFDP) (Balotari-Chiebao et al., 2021). 

However, the territorial attachment during this phase could not only influence the home range 

estimations but could also bias the cumulative collision risk results. Given that the natal site of most 

tagged individuals was close to Smøla wind farm, the probability of frequent flights through the wind 

farm during this phase is high. Therefore, by including these data, the cumulative risk assessment 

would no longer be limited to moving sub-adult individuals, which was the objective. Another 

possible limitation is related to the resource selection, as a large part of the eagle relocations were 

found around the Smøla archipelago. This could have biased the predictive resource selection model 

towards the landscapes of this region, which was then extrapolated to the entire study area. However, 

this does not necessarily mean that the resource selection would be significantly different elsewhere 

along the study area. The data represent a wide range of habitats and environmental variables typically 

found in Norwegian landscapes. As a result, the probability of a biased resource selection model and 

subsequent predicted collision risk is minimal.  

 

In the collision risk model from Tucker (1996), the risk is only assessed on individual level, and does 

not measure an actual number of expected collisions on a population level (Masden & Cook, 2016; 

Tucker, 1996). However, in this thesis, the final collision risk estimates are linked to population size, 

as the probability of presence is used as a basis for risk estimation. This made it possible to calculate 

the proportion of the total population that is expected to collide in each wind farm, as explained in 

chapter 2.8. Still, the link between the predicted probability of presence and population density also 

facilitates the possibility of estimating the actual number of collisions, if the total population size 

across the study areas is known (Bourgeron et al., 1999). This stage was excluded in this thesis, as no 

effective way of upscaling from predicted collision risk to number of individuals were found. 

Nevertheless, the approaches used in this thesis provides a tangible result and should be considered 

in similar studies when total population density data are available. The model from Tucker (1996) is 

also influenced by some general assumptions that could affect the collision risk results. The eagles 
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are assumed to be gliding, and not flapping at the time of collision (Masden & Cook, 2016). The 

potential turbine collisions are also only expected to occur with the rotating tower blades, and not the 

towers themselves (Masden & Cook, 2016). However, it is worth noting that the effects of these minor 

assumptions are likely to be very low.  

 

The modelling and predictive collision risk assessments in this thesis creates an insightful and 

important foundation for further analysis that highlights the harmful effects of wind power. The 

accuracy of the predicted collision risks could be enhanced by incorporating additional environmental 

variables. For example, local weather conditions are known to increase the risk of birds colliding with 

turbines due to the impact on terrain visibility (Johnson et al., 2002; Marques et al., 2014). The 

weather data could be included to highlight areas that have a higher probability of reduced visibility, 

which would then be accounted for in the total collision risk predictions. Further research could also 

include the changes in cumulative collision risk as the development of new wind farms continues. 

This would be particularly interesting if more effective mitigation strategies were implemented in 

both new and existing wind farms in the future. Nevertheless, there is an indefinite number of both 

fixed and dynamic factors influencing collision risk in wind power environments. As a result, the 

negative effects on white-tailed eagles and other bird populations still require additional research 

when the development of wind power will increase.  

 

5. Conclusion 

 

In this study, the total collision risk for white-tailed eagles in relation to onshore wind power were 

modelled and predicted across the landscape. The risk levels of existing onshore wind power 

installations were also analyzed, in addition to the cumulative collision risk for each individual eagle 

during the tracking period. The study illuminates the complexity associated with predictive collision 

risk, and why these findings can be essential in reducing the harmful effects on white-tailed eagle 

populations. Through the process of predictive modelling, pivotal environmental variables increasing 

the probability of eagle presence and flying at risk heights were identified. The implementation of a 

mathematical collision risk model also increased the level of detail in the total predictive collision 

risk. By knowing where the eagles are prone to increased collision risk at site-specific levels, the 

impact assessments for future wind farm installations may improve. The detailed nature and high 

resolution of the predictive maps also allowed for specific risk estimations for existing onshore wind 
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farms. The differences in collision risk between different sites was considerable, with certain wind 

farms being sited far less effective than others. These findings can increase the incentives to 

implement effective mitigation strategies in both existing and future wind farm developments. 

Additionally, the cumulative collision risk assessment revealed that a wide range moving sub-adult 

eagle is almost guaranteed to move through several wind farms during an extended tracking period. 

The risk of collision increases with each intersection, amplifying the need for site-specific mitigation 

measures in several wind farms. As the development is expected to increase, the importance of 

understanding the complex relationship between wind power and avian wildlife is rapidly growing. 

Hence, the use of landscape-level predictive mapping and cumulative risk assessment can function 

as important tools in maintaining sustainability in large-scale strategic planning. These methods 

represent a step in the right direction for improved nature conservation efforts and can pave the way 

for further impact research.  
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Appendices 

 

Appendix A: Aggregated land cover types 

Aggregated land cover types from Corine Land Cover 2018. 
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Appendix B: Home range polygons  

Home ranges for each individual white-tailed eagle included in the analysis. The color-range 

represents the proportion of relocations found within these areas. 
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