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A B S T R A C T

Offshore wind farms generate electricity at relatively low cost and are regarded as a major contributor to net zero 
targets, supporting United Nations Sustainable Development Goals 7 and 13. However, some seabird species are 
at risk of colliding with turbine blades or being displaced by offshore wind farms. The European Union and the 
UK have legal requirements for wind farm developers to implement compensation measures if their de-
velopments are likely to have an adverse impact on the integrity of seabird populations in Special Protection 
Areas. Compensation measures that have been established have carbon costs and are applicable only to a 
restricted group of species, reducing the overall benefits. Here we make a novel suggestion that placement of 
seaweed farms close to selected seabird colonies could act as compensation for mortality associated with offshore 
wind farms. Many seabirds construct nests from seaweed that they collect at sea. These birds may also use plastic 
waste in nest construction. Plastic can kill seabirds by entanglement. Increasing availability of seaweed could 
reduce this mortality by reducing use of plastic in nest construction. This novel approach has multiple advantages 
over other forms of compensation. In particular it could benefit northern gannets Morus bassanus, a species 
considered especially at risk from impacts of offshore wind farms but not addressed by existing compensation 
measures. Seaweed farming as a compensation measure could also contribute to carbon sequestration and 
provide other environmental benefits as well as promoting the growth of an industry not yet well established in 
European seas.

1. Introduction

The planet is facing dual climate and biodiversity crises. The urgency 
of these twin crises requires “bold implementation of transformative 
policy interventions from local to global levels” [1]. Contributing to the 
United Nations Sustainable Development Goal (UNSDG) 13 (Climate 
Action), the United Kingdom (UK) is legally committed to reaching net 
zero emissions of greenhouse gasses by 2050 [2]. However, the UK’s 
independent Climate Change Committee has determined that meeting 
this target will require not just reducing emissions, but also the active 
removal of carbon dioxide from the atmosphere [3,4]. The rapid 
development of wind farms provides a means to reduce emissions and 
thus tackle the climate crisis. However, this may have adverse impacts 
on some aspects of biodiversity. There is an urgent need, therefore, to 
determine how best to prevent negative impacts of wind farms on 

biodiversity to allow for transition towards net zero targets. Developers 
of offshore wind farms are required to mitigate predicted impacts on 
seabirds by adjustments to the design, construction and operation of 
turbines that will be expected to reduce numbers of seabirds that are 
killed. Nevertheless, there will still be a residual impact after mitigation. 
That may produce a legal requirement for compensation (reductions of 
other existing pressures on seabirds) to offset the residual impact of 
offshore wind. Compensation addresses other threats to seabirds where 
actions could be taken to reduce the impacts of those threats, and 
therefore compensates for the residual and unavoidable impacts of 
offshore wind. Here, we draw together for the first time, evidence that 
commercial seaweed farming strategically located near selected seabird 
colonies could play a role in compensating for the impacts of offshore 
wind farms on some seabird species, while also contributing to carbon 
sequestration and providing a range of other environmental benefits. 
This could facilitate the expansion of offshore wind electricity 
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generation without adverse net impacts on protected seabird pop-
ulations as well as providing wider benefits to the environment and 
marine economy.

The development of offshore wind farms represents a very effective 
approach to reducing the carbon dioxide emissions that are associated 
with electricity generation [5–7]. Wind farms provide electricity at 
relatively low cost and with a low carbon footprint [8,9] thus contrib-
uting to the UNSDG 7 (Affordable and Clean Energy). However, offshore 
wind turbines may harm some seabird species. Seabirds may be at risk of 
increased mortality caused by collision with rotating turbine blades [10,
11]. Some species may avoid offshore wind farms, thus increasing the 
time and effort that they need to spend foraging for food [12,13]. With 
the rapid development of this industry, UK waters now hold a particu-
larly high concentration of offshore wind farms, especially off the east 
coast of England and Scotland, the cumulative effect of which, even after 
all feasible mitigation measures have been incorporated, may have 
significant impacts on the integrity of some seabird populations.

Many seabirds (such as auks) rarely fly at the height of the rotating 
turbine blades and are thus at low risk of collision [11]. In contrast, 
however, other species, such as black-legged kittiwakes Rissa tridactyla, 
northern gannets Morus bassanus, Sandwich terns Thalasseus sandvicensis 
and lesser black-backed gulls Larus fuscus often fly at heights that pre-
sent a collision risk [11,14], and are thus considered to be key species at 
risk of collision mortality in European waters [10]. In addition, some 
seabirds, such as red-throated divers Gavia stellata, show strong avoid-
ance of offshore wind farms [15–17]. Others, such as auks, show limited 
or inconsistent avoidance [12,18,19]. Avoidance of turbines and other 
structures may reduce the available feeding habitat and/or increase the 
energy expenditure for birds that choose to fly around, rather than 
through, offshore wind farms [20,21]. The resulting energy costs and 
loss of foraging habitat due to displacement and barrier effects might 
increase seabird mortality, although the extent to which that may 
happen is highly uncertain [20,22,23]. Because seabirds tend to be 
long-lived with deferred maturity and low reproductive rates (for 
example adult northern gannets have an annual survival rate of 92 %, 
but only start to breed when five years old and only lay one egg per year 
[24]), their populations are especially vulnerable to additional mortality 
[25]. Precautionary assessments of the possible impacts of offshore wind 
developments using simple population models have raised concerns 
about the sustainability of some seabird populations impacted by 
offshore wind farms [26].

The European Union (EU) and the UK have implemented the Birds 
and Habitats Directives in order to protect populations of birds and other 
wildlife, and their habitats. These directives require the long-term 
maintenance of the integrity of protected habitats and wildlife pop-
ulations that are features of Special Protection Areas (SPAs) or Special 
Areas of Conservation (SACs). If, despite all feasible mitigation measures 
having been adopted, any development may threaten this integrity, 
there is a legally-binding requirement to compensate for the assessed 

impacts, with compensation measures expected to benefit populations 
by more than the assessed impact from a development. Britain and 
Ireland have internationally important breeding populations of many 
seabird species [27]. Accordingly, many seabird colonies have been 
designated as SPAs with breeding seabirds as their protected feature. For 
example, the 13 SPAs for breeding northern gannets in the UK and Re-
public of Ireland hold over 57 % of the entire world breeding population 
of that species [27]. There is therefore a tension between the rapid 
construction of offshore wind farms in order to achieve net zero and 
avoiding harm to seabird populations protected by the Birds and Habi-
tats Directives. Potential impacts on protected seabirds pose the greatest 
risk to obtaining consent for construction of offshore wind farms in the 
UK [28]. This has led to substantial financial costs to developers with the 
surveys and data analysis required for planning applications costing 
around £12 million for a 1 GW offshore wind farm [28]. Docking Shoal 
failed to obtain planning consent due to perceived impacts on Sandwich 
terns [28] and a further planned development of offshore wind farms in 
the Outer Thames SPA was withdrawn because of perceived impacts on 
red-throated divers [28,29]. In German North Sea waters it has recently 
been concluded that offshore wind farms have displaced an important 
part of the red-throated diver population of the Eastern German Bight 
SPA [17].

Based on evidence presented by Natural England, the Secretary of 
State concluded that it was impossible to be certain that the predicted 
impacts of offshore wind farms could be held below levels that would 
risk damage to the integrity of some protected seabird populations in 
east England [26,30]. The same conclusion has been reached by 
NatureScot and by developers for several seabird populations in east 
Scotland [31,32]. There is therefore a legal requirement for further 
offshore wind farm developments in the UK and EU to compensate for 
the perceived negative effects on protected seabirds through targeted 
interventions that prevent any net reduction in the abundance of pro-
tected populations.

Compensation plans are generally targeted at individual protected 
species, and include measures such as the construction of bespoke 
nesting towers for black-legged kittiwakes [30,33], the eradication of 
invasive mammal predators such as rats from islands to enhance the 
breeding habitat for auks [30,31,33], the construction of protected 
nesting habitat for Sandwich terns [30], and reducing the fisheries 
by-catch of auks in set nets [30]. These compensation measures may cost 
millions of pounds per project [30–33], and the different ecologies of 
different protected seabird species mean that measures that provide 
appropriate compensation for one species are often inappropriate for 
others. For example, no obviously effective and practical compensation 
measures have yet been identified for northern gannets [34]. Following 
unprecedented mass mortality of breeding northern gannets and their 
chicks at many colonies around the North Atlantic in 2022 caused by 
High Pathogenicity Avian Influenza (“bird flu”) [35], concern over the 
need to be able to compensate for the impacts of offshore wind farms on 
northern gannets has increased [32].

2. Seabirds, seaweed, and plastic pollution

Many seabirds, including northern gannets [36], actively build their 
nests using appropriately sized scraps of available material, traditionally 
seaweed (Table 1). Most seabirds are unable to dive to the seabed in 
search of seaweed and do not normally land in intertidal areas to pick up 
growing seaweed at low tide. Instead they collect scraps of detached 
floating seaweed from the sea surface. In addition, whereas some sea-
birds construct nests during a short period in spring, others continue to 
add nesting material to their structures throughout the breeding season 
(Table 1). The presence of floating plastic pollution around seabird 
colonies means that seabirds may also pick up plastic for use as nesting 
material (Table 1). O’Hanlon et al. [37] accordingly found anthropo-
genic debris (mostly plastic) incorporated into nests of 12 out of 16 
examined species of seabirds across Europe, and Thompson et al. [38] 

List of abbreviations

BACI Before-After-Control-Impact
EU European Union
GW Gigawatt
IPCC International Panel on Climate Change
SAC Special Area of Conservation (under the Habitats 

Directive)
SPA Special Protection Area (under the Birds Directive)
SSE Scottish and Southern Electricity
UK United Kingdom
UNSDG United Nations Sustainable Development Goals
US$ United States of America dollar
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found plastic incorporated into up to 80 % of nests of five seabird species 
on an island in west Scotland. Votier et al. [36] found plastic debris in 
80 % of nests of northern gannets at a nesting colony in Wales and 
estimated that the colony as a whole held about 18.5 tonnes of plastic 
waste in northern gannet nests. Plastic has also been found extensively 
in northern gannet nests at colonies elsewhere throughout the North 
Atlantic, with plastic visible on the surface of an average of 49 % of 
individual nests [39]. At Helgoland, Germany, in 2005, 100 % of 
northern gannet nests contained plastic [40]. Although the prevalence of 
plastic in seabird nests has been the subject of study, very little is known 
about the extent to which seabirds may select particular colours or types 
of plastic, or whether they only collect plastic when they are unable to 
find natural material such as seaweed. However, it is evident that there 
is considerable competition among seabirds to collect nesting material; 
northern gannets often fight for fragments of seaweed and will steal 
material from unguarded nests of neighbouring gannets.

There are multiple global, national and regional initiatives to reduce 
the amount of plastic getting into the environment, and to remove 
plastic pollution. Nevertheless, the problem of plastic litter at sea has 
been increasing [41] and it is expected to increase further [42]. Pre-
sumably as a consequence of the increased abundance of plastic in the 
marine environment, the prevalence of plastic in black-legged kittiwake 
nests at a colony in Denmark increased by 46 % in the 13 years between 
1992 and 2005 [40]. It is also a global problem; plastic has been found 
incorporated into seabird nests even in remote areas [43]. Thompson 
et al. [38] speculated that incorporating plastic into nest structures 
might alter the thermal and drainage properties of seabird nests which 
could in turn reduce the birds’ breeding success. However, further 
studies are required to assess this possible impact. Plastic incorporated 
into nest structures certainly results in entanglement and death of sea-
birds [44]. Votier et al. [36] noted that a minimum average of 63 
northern gannets died each summer at the colony on Grassholm, Wales, 
as a result of entanglement in plastic built into nests. Mortality of 
northern gannets trapped in plastic incorporated into nests has also been 
reported, but not quantified, at colonies in Scotland and Canada [36]. 
Entanglement mortality at nests has also been reported for cormorants 
[45] and gulls [46,47]. In addition to getting entangled with plastic in 
the nest structure, the act of collecting plastic at sea to use as nest ma-
terial is also likely to increase the risk of entanglement of seabirds while 
at sea because this behaviour brings birds into close contact with 
floating plastic. Entanglement and subsequent drowning of seabirds at 
sea as a result of plastic waste has increased as amounts of plastic waste 
have increased [48]. These observations all point to the need to reduce 

plastic pollution at sea.
Substantially reducing the amount of plastic in the seas and oceans 

seems to be beyond current technological capabilities despite height-
ened awareness of this type of pollution, the animal welfare issues it 
causes and the potential impacts on marine animal populations [41]. It 
is to be hoped that in future there will be solutions applied to reduce 
plastic pollution. However, until then, it may be possible to introduce 
measures to reduce the extent to which seabirds make use of plastic as 
nesting material. Such an approach would be complementary to efforts 
to reduce plastic pollution. Brown boobies Sula leucogaster are close 
relatives of northern gannets and have been shown to use plastic more at 
colonies where there is a shortage of natural material in the surround-
ings [49,50]. The same relationship has also been reported for great 
cormorant Phalacrocorax carbo [45], indicating that the use of plastic 
could be diminished if the availability of natural nest material such as 
floating seaweed could be increased in the local environment where 
breeding seabirds are searching for nest construction material [40]. 
Implementation of measures that reduce the use of plastic as a nesting 
material by northern gannets and other seabirds would have quantifi-
able benefits in terms of survival and breeding success of the birds and 
therefore could provide compensation for some impacts of offshore wind 
farms.

3. Seaweed aquaculture

Despite its potential to float over long distances and to be aggregated 
by marine fronts and rotating ocean currents known as gyres, the 
amount of detached floating seaweed in coastal environments is pri-
marily dependent upon the amount of seaweed growing locally [55–57]. 
Consequently, actively encouraging increased production of seaweed 
close to gannet colonies may be an appropriate compensation strategy 
for developers of offshore windfarms that are predicted to threaten those 
colonies. Given the current lack of established compensation measures 
for northern gannets, this alone would be a good reason to assess the 
viability of seaweed aquaculture as a compensation measure. Seaweed 
aquaculture, however, has numerous other benefits apart from as a 
potential compensation measure.

The global seaweed farming industry is highly developed, with 
annual production of 27.3 million tonnes globally in 2014 valued at 5.6 
billion US$ [58]. Notably, the EU and UK contribute very little to this 
industry [59]. Seaweed use in the UK comes mostly from harvesting of 
natural wild seaweed stocks [60]. The Scottish Government lists 24 
marine pressures that can be caused by harvesting natural seaweed 
stocks, including loss of seaweed habitat (change to another seabed 
type), opportunistic seaweed species replacing harvested species so 
reducing species diversity, a reduction in the availability or quality of 
prey that inhabit areas of seaweed, the removal of non-target species, 
and changes in wave exposure on harvested coastlines with consequent 
increases in coastal erosion [60]. Harvesting natural seaweed resources 
may also have impacts by disturbing coastal birds and by reducing the 
availability of seaweed for nest-building by species such as cormorants 
and gannets [61]. In contrast, seaweed farming in which seaweed is 
seeded onto long-lines that float close to the sea surface, has the po-
tential to increase the area of seaweed habitat as well as supporting 
sustainable industry, and new organisations such as The Seaweed Alli-
ance are currently forming to encourage and support the development of 
seaweed aquaculture in the UK [62]. Seaweed aquaculture can be 
commercially profitable, providing food, medicines, and bioplastics, and 
also a harvest of material for biofuels that can help to reduce fossil fuel 
consumption [58,63]. Seaweed farming results in an increase of 
sequestered carbon as some of the production sinks to the seabed and 
becomes incorporated into sediments. In addition, the UK’s climate and 
extensive coastline makes it well-suited to host seaweed aquaculture 
projects [64].

Beyond their direct commercial potential, seaweeds provide a range 
of quantifiable and valuable ecosystem services. Kelp forests act as a 

Table 1 
Construction of nests including seaweed and plastic by European seabirds.

Species Seaweed in nests Plastic in nests Period during 
which nest- 
building occurs

Northern gannet 
Morus bassanus

Principal nest 
material [51,52]

High prevalence 
[36,39]

April to August 
[51,52]

Great cormorant 
Phalacrocorax 
carbo

Principal nest 
material [51]

Moderate 
prevalence [38,
45]

March to August 
[51]

European shag 
Phalacrocorax 
aristotelis

Principal nest 
material [51]

High prevalence 
[38]

March to August 
[51]

Black-legged 
kittiwake 
Rissa tridactyla

Secondary nest 
material [53,54]

Moderate 
prevalence [40]

April to June [53,
54]

Great black-backed 
gull 
Larus marinus

Secondary nest 
material [53]

Moderate 
prevalence [38]

April to May [53]

Herring gull 
Larus argentatus

Minor nest 
material [53]

Moderate 
prevalence [38]

April to May [53]

Lesser black- 
backed gull 
Larus fuscus

Secondary nest 
material [53]

Moderate 
prevalence [38]

April to May [53]
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nursery for economically important fish and shellfish, improve water 
quality, and can reduce coastal erosion by reducing wave height [65]. 
Furthermore, seaweeds can be important stores of blue carbon (i.e. 
carbon removed from the carbon dioxide pool in the atmosphere and 
stored in marine environments, where management of those ecosystems 
can influence the amount stored). Seaweeds hold short term carbon 
stores while alive, but carbon sequestered by kelp and other seaweeds 
can also be buried in sediments away from the site of growth over much 
longer timescales [59,66]. This long term storage means that seaweed 
farming in UK waters could contribute to carbon capture and storage 
and, in so doing, contribute to net zero emissions goals. Saltmarsh, 
seagrass and mangrove are the three best understood stores of blue 
carbon and are the only blue carbon habitats for which the Intergov-
ernmental Panel on Climate Change has published guidelines for in-
clusion in national greenhouse gas inventories [67]. However, seaweeds 
are a candidate for future incorporation into such inventories [68] and 
have considerable potential as a carbon sink [65,69]. Some projects, 
such as the Yokohama Blue Carbon Project in Japan, have begun to issue 
carbon credits for seaweed aquaculture [70], and this approach is liable 
to expand in future as the carbon fluxes in seaweed systems become 
better understood. We conclude that long-line farming of seaweed at sea 
(away from the shore) has multiple benefits, including net biodiversity 
gain, increased local employment in remote areas, and carbon storage 
contributing to UNSDG 13 (Climate Action).

4. Seaweed farming as a compensation measure

Co-location of offshore wind farms and seaweed aquaculture sites 
has been proposed as an efficient use of marine space in spatial planning 
[71]. However, it should be noted that locating floating seaweed farms 
at offshore wind farms could potentially increase the collision risks for 
seabirds that might be attracted to collect seaweed from such sites to use 
as nesting material. Indeed, even in the absence of any such additional 
attraction of birds into the area, seabirds carrying seaweed are likely to 
be at higher risk of colliding with turbine blades because flight speed is a 
key factor determining collision risk [72]. Seabirds carrying seaweed 
will experience increased drag and so will therefore tend to fly more 
slowly than unencumbered birds [73], which increases collision risk for 
birds flying through the rotor swept area [72]. Consequently, while 
opportunistic seaweed farming around offshore wind farms is likely to 
provide a range of benefits but may have costs for seabirds, concen-
trating seaweed farming in areas close to protected colonies of seabirds, 
such as northern gannets and gulls, would have the potential to not only 
contribute to achieving net zero, but also compensate for the impacts of 
offshore wind farms on seabirds, as well as provide a profitable business, 
clean local seawater and reduce local coastal erosion.

5. The way forward

It is essential that compensation measures taken under the Birds and 
Habitats Directives are shown to be effective. Monitoring of the extent to 
which seabirds benefit from seaweed aquaculture could be achieved by 
aerial photography of colonies, which allows not only the amount of 
plastic visible in nests to be monitored [39] but can also quantify the 
numbers of dead northern gannets entangled at their nests [74]. An 
experimental approach needs to be taken, preferably using a 
before-after-control-impact (BACI) design. The best baseline data exist 
for northern gannets, which are known to build nests mainly from 
seaweed collected at sea, to add to the nest throughout the summer, to 
be killed by plastic entanglement at the nests and at sea, and are rela-
tively easy to monitor [39,74]. This suggests that offshore wind farm 
developers should consider funding the creation of seaweed farms close 
to several northern gannet colonies, with the aim of establishing how 
management of the farms influences the use of seaweed and plastic in 
the construction of seabird nests. Such research would be practical and 
scientifically valuable. The extent to which seaweed farming close to 

seabird colonies will reduce the use of plastic in nest building is 
currently uncertain and will probably depend in part on the species of 
seaweed being farmed and the quantities that break off from the culti-
vation lines, but existing literature indicates that a reduction is highly 
likely, suggesting that seaweed farming may represent an effective 
method of compensation for offshore wind farm developers. To be 
effective in reducing the use of plastic in nest building, seaweed farming 
would need to provide scraps of floating seaweed in the area around the 
seaweed farm at the appropriate times of year for gannets to collect. 
Scraps of seaweed will break off from the long lines naturally, but it may 
be necessary to supplement that by deliberate release of seaweed from 
the long-line cultivation site to increase availability to gannets, which 
could reduce profitability of the farm. Such costs would represent 
compensation costs to the offshore wind farm industry as making ma-
terial available for seabirds to build nests would need to be prioritized 
over other uses. The extent to which deliberate release would be 
required would need to be determined experimentally through adaptive 
management. Nevertheless, such development would come with a wide 
range of valuable co-benefits, not least being the stimulation of an in-
dustry that is currently underdeveloped in Europe but appears to have 
considerable economic potential [58,62–64]. The carbon sequestration 
associated with seaweed farming [59] would also help to support the 
climate goals of the wind farm industry and of governments, contrib-
uting directly to UNSDG 13 (Climate Action).
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