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Abstract
1.	 Worldwide, wind turbines are increasingly being built at forest sites to meet 

the goals of national climate strategies. Yet, the impact on biodiversity is barely 
understood. Bats may be heavily affected by wind turbines in forests, because 
many species depend on forest ecosystems for roosting and hunting and can 
experience high fatality rates at wind turbines.

2.	 We performed acoustic surveys in 24 temperate forests in the low mountain ranges 
of Central Germany to monitor changes in the acoustic activity of bats in relation to 
wind turbine proximity, rotor size, vegetation structure and season. Call sequences 
were identified and assigned to one of three functional guilds: open-space, edge-
space and narrow-space foragers, the latter being mainly forest specialists.

3.	 Based on the response behaviour of bats towards wind turbines in open land-
scapes, we predicted decreasing bat activity towards wind turbines at forest 
sites, especially for narrow-space foragers.

4.	 Vertical vegetation heterogeneity had a strong positive effect on all bats, yet 
responses to wind turbines in forests varied across foraging guilds. Activity 
of narrow-space foragers decreased towards turbines over distances of sev-
eral hundred metres, especially towards turbines with large rotors and during 
mid-summer months. The activity of edge-space foragers did not change with 
distance to turbines or season, whereas the activity of open-space foragers in-
creased close to turbines in late summer.

5.	 Synthesis and applications. Forest specialist bats avoid wind turbines in forests 
over distances of several hundred metres. This avoidance was most apparent 
towards turbines with large rotors. Since forests are an important habitat for 
these bats, we advise to exclude forests with diverse vegetation structure as po-
tential wind turbine sites and to consider compensation measures to account for 
habitat degradation associated with the operation of wind turbines in forests.
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1  |  INTRODUC TION

Global carbon dioxide emission is the main driver of climate change 
(Solomon et al.,  2009), threatening biodiversity and human econ-
omies worldwide (Bellard et al.,  2012; Walther et al.,  2002). To 
mitigate this threat, many countries are promoting wind energy 
production as a sustainable form of energy from renewable sources 
(Gielen et al., 2019). However, a growing body of literature indicates 
that the construction and operation of wind turbines may lead to 
habitat loss and an increased mortality risk for wildlife (Grünkorn 
et al., 2017; Kuvlesky et al., 2007; Saidur et al., 2011). For instance, 
past studies documented high fatality rates of bats and birds at wind 
turbine rotors (Arnett et al., 2016; Thaxter et al., 2017). Indeed, it 
was suggested that wind turbines may be the most significant an-
thropogenic factor causing multiple mortality events in bats (O'Shea 
et al., 2016). Consistent with this notion, past studies estimated that 
annual losses of bats at wind turbines may reach several hundred 
thousand in countries of the temperate zone (Hayes,  2013; Voigt 
et al.,  2015; Zimmerling & Francis,  2016). This is mirrored in ob-
served and modelled population declines of high collision risk spe-
cies in North America and Europe (Frick et al., 2017; Friedenberg & 
Frick, 2021; Printz et al., 2021).

Our current understanding of the wind energy–bat conflict is 
based almost exclusively on studies conducted at wind turbines oper-
ating in open landscapes. However, over recent years, turbines have 
been increasingly built at forest sites throughout Europe, particularly 
in Central and Northern Europe (Gaultier et al., 2020), despite guide-
lines recommending the contrary when alternative sites are available 
(Rodrigues et al., 2014). For instance, in Germany, more than 2,000 
wind turbines (7.5% of all onshore turbines) operate currently at for-
est sites (Mackensen, 2019; Quentin & Tucci, 2021). To reduce further 
greenhouse gas emissions, recent pledges aimed at doubling the share 
of renewable energy production by increasing the area assigned for 
wind energy development from 0.8% (as of 2021) to 2.0% of the total 
surface area until 2030 (BMWK, 2022). Since land use pressure on 
open landscapes is already high and critical distances between wind 
turbines and settlements need to be maintained, several German fed-
eral states expand wind energy production in forests.

Although non-primary forests of the temperate zone are usually 
managed for timber production, they offer valuable habitats for many 
species (Götmark, 2013; Hilmers et al., 2018; Spiecker, 2003). Forests 
constitute important hunting grounds for forest specialist bats and 
provide shelter for many more bat species (Dietz & Kiefer,  2014; 
Müller et al., 2013; Plank et al., 2012). Thus far, it is largely unknown 
how wind turbines in forests affect forest-associated bats. Although 
not at high risk of colliding with turbine rotors, forest specialist bats 
foraging below the canopy may be impacted by indirect wind tur-
bine effects (Hurst et al., 2020). For instance, studies in open land-
scapes documented a reduced bat activity close to wind turbines 
compared to control sites without turbines, suggesting an avoidance 
behaviour and an indirect habitat loss for several species (Millon 
et al.,  2015). Another study documented decreased bat activity 
along transects towards turbines (Barré et al., 2018), an observation 

that was confirmed for small wind turbines (Minderman et al., 2017). 
The underlying cause for this avoidance remains unclear, but bats 
may respond to turbine-generated noise (Allen et al.,  2021; Finch 
et al., 2020) or potentially to artificial light (Bennett & Hale, 2014). 
Turbine construction in forests is further accompanied by fragmen-
tation and degradation (Lesiński et al., 2007), while the creation of 
clearings and aisles is leading to a loss of foraging habitats and day-
time roosts in trees (Hurst et al., 2020). However, forest fragmenta-
tion may also lead to increased activity of those bats which are more 
adapted to open and edge habitats and to an increased collision risk 
for these species at forest wind turbines (Kirkpatrick et al., 2017).

In temperate forests, diverse vegetation structure and vertical 
stratification facilitate the cohabitation of three foraging guilds: 
open-space foragers which hunt insects above the canopy and in 
clearings, edge-space foragers which hunt along structures like for-
est edges or within gaps, and narrow-space foragers which hunt 
in dense vegetation and are especially adapted to life in forests 
(Denzinger & Schnitzler, 2013). The effect of habitat changes re-
lated to turbine construction and operation on bats may be guild 
specific due to different ecological requirements. The activity 
of open- and edge-space bats could even increase towards wind 
turbines caused by their attraction to clearings and forest edges 
(Kirkpatrick et al., 2017). Conversely, narrow-space foragers might 
respond negatively or not at all to the turbine-related habitat 
changes as they do not profit from open or semi-open habitats. In 
addition, a structure-rich forest vegetation could influence how far 
turbine effects on bats may extend into the surrounding forest, as 
dense vegetation may block visual signals and mitigate noise pol-
lution. Lastly, turbine effects on bats may depend on the season, 
since bat activity varies throughout the year (Heim et al.,  2016). 
For instance, most fatalities at turbines have been reported in late 
summer, coinciding with the post-weaning period of juveniles and 
the migration season (Kruszynski et al., 2022). Here, we asked how 
wind energy production affects bat assemblages in non-primary 
forests of Central Europe. This is a critical question since all bat 
species are protected by national and international legislation. 
Knowledge of factors that impact forest-associated bats is key to 
formulate adequate mitigation and compensation measures to pro-
tect bats when expanding wind energy production in forests.

In our study, we used call activity as a proxy for the abundance of 
bats and thus conducted acoustic surveys along distance gradients 
towards wind turbines in 24 forests. Compared to earlier distance-
gradient studies on bat activity at wind turbines, our focus on for-
est sites is novel and offers new insights about the consequences of 
wind turbine integration in forests accounting for vegetation struc-
ture. We predicted (I) that bat activity decreases with increasing 
proximity to the nearest turbine and that this effect will be stron-
ger at larger wind turbines, where sensory pollution is presumably 
stronger. Moreover, we expected (II) that bat responses differ across 
functional guilds with strongest impacts for the activity of forest 
specialists, that is, narrow-space foragers and (III) that bat responses 
may vary across seasons and with vertical vegetation heterogeneity 
as a measure of forest structure. Our study aims to contribute to a 



    |  3Journal of Applied EcologyELLERBROK et al.

sustainable wind energy development in forests from the perspec-
tive of bat conservation. Ultimately, this will help to reconcile the 
two important environmental goals of mitigating climate change and 
protecting biodiversity.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

We conducted our study in Hesse, a federal state in Central Germany 
characterized by temperate low range mountains and a forest cover 
of 42% (316–545 m a.s.l., 50°81′N, 8°81′W, Figure 1). We selected 
24 forests ranging from coniferous monocultures to mixed and de-
ciduous stands. Forest patch size varied between 184 and 6,337 ha 
(1,798 ha ± 1,745 ha; mean ± standard deviation, hereafter). Wind 
turbines in our study sites had been erected between 2006 and 
2017 (6 ± 3 years). Tower height ranged between 145 and 212 m 
(194 m ± 16 m; N = 24) while rotor diameter ranged between 82 and 
126 m (mean: 112 m ± 11 m). Studied turbines were located individu-
ally in cleared forest patches that ranged in size between 0.16 and 
11.77 ha (median: 1.75 ha). To minimize the confounding effects of 
other anthropogenic disturbances and edge effects, we excluded 
study sites adjacent to highways and factories and established all 
transect points at a distance of more than 473 m (median) to the for-
est edge (91–1,884 m). Fieldwork permits were obtained from the 
respective forest owners. Ethical approval was not required.

2.2  |  Sampling of bat echolocation calls

At each forest site, we used a distance-gradient study design with 
sampling points at 80, 130, 250 and 450 m distance to our focal 

turbine at the edge of the wind farm. In one study site each, one 
80, 130 and 250 m point had to be skipped because of smaller 
clearings. For acoustic monitoring, we used automated bat record-
ers (BATLOGGER A+; Elekon). At each sampling point, we installed 
one recorder per forest stratum: near-ground in the clutter-free 
understorey (approx. 2.5 m height) and a second recorder in the 
lower canopy, where height varied according to forest succession 
stage (range: 4 m–22 m; 13 m ± 4 m). Recordings were conducted 
in 45 nights between mid-May and mid-September 2020, from 
9 pm to 5 am. Per night, we recorded simultaneously at two geo-
graphically close transects and at each sampling point in the two 
designated forest strata. At every recording point, we recorded 
bat calls once per sampling period (1: May 17–June 5; 2: June 8–
July 7: 3: July 13–August 15; 4: August 18–September 17) with 
intervals of 17–58 days (33.29 ± 11.26 days) in between. Some ex-
ceptions were caused by technical failures and unforeseeable log-
ging activities (four recording nights at 156 recording points, three 
at 15 points, two at 1 point and one at 14 points). We employed 
BATLOGGER default settings with a trigger frequency between 
15 and 155 kHz, thus covering the call frequency range of species 
expected in the local bat assemblage. We set a pre-trigger time of 
500 ms, a post-trigger time of 1,000 ms and a recording intersec-
tion time of 20s. We used the CrestAdvanced trigger algorithm 
to enhance the recording probability of quiet calls and minimize 
sensitivity towards disturbing noise (Elekon AG, 2020).

2.3  |  Sampling of covariates

At each sampling point, we assessed four environmental variables 
that were assumed to influence bat activity: As a proxy for habi-
tat heterogeneity, we estimated vegetation cover at heights of 0, 
0.5, 1, 2, 4, 8, 16 and 32 m to the nearest 5% within a 10 m radius 

F I G U R E  1  Map of the study area. Location of the sampling sites in (a) Germany and (b) Hesse are marked in blue. (c) Example transect at 
the edge of a forest wind farm with sampling points set up in increasing distances to the focal turbine.
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around distance points. We then calculated the diversity of the 
layers at each distance point using the Shannon–Weaver index 
to obtain vertical vegetation heterogeneity (Bibby et al.,  2000). 
Furthermore, as a proxy for age structure, we measured the av-
erage tree canopy height in the immediate surrounding of sam-
pling points with the help of a laser rangefinder (Forestry 550; 
Nikon) and used aerial photographs (Google Ireland Limited) to 
measure the distance between sampling points and the nearest 
outer forest edge. Finally, we calculated the proportion of decidu-
ous and coniferous trees based on the Copernicus land cover map 
(ESA, 2018) within a 200 m radius around distance points, here-
after called tree composition. To capture differences in turbine 
characteristics, we retrieved the rotor diameter of each turbine 
from the publicly accessible database of Hessian environmental 
agency (HLNUG, 2019).

2.4  |  Call analysis

We used the software BatExplorer (version 2.1.7.0; Elekon) to 
manually assign echolocation calls to bat species, only relying on 
the automatic call identification for Pipistrellus pipistrellus. We 
identified bat species based on echolocation call characteris-
tics such as peak frequencies and call shapes from the literature 
(Barataud,  2020; LFU Bayern,  2020; Skiba,  2009). We subse-
quently grouped all call sequences into one of three ecological 
guilds (Denzinger & Schnitzler, 2013): open-space foragers (con-
sisting of the genera Eptesicus, Vespertilio and Nyctalus), edge-
space foragers (Pipistrellus ssp. and Barbastella barbastellus) and 
narrow-space foragers (genera Myotis and Plecotus). Sequences 
that could not be identified because of poor recording quality 
were discarded (0.4%). To obtain a proxy for the local bat abun-
dance and prevent overestimation of single bats, we calculated the 
number of bat activity minutes for each of the three ecological 
guilds per night, sampling point and stratum. We divided record-
ings of all nights into 60-s intervals and counted minutes with at 
least one echolocation call, hereafter called activity minutes (Heim 
et al., 2016). If calls of more than one bat species appeared in one 
interval, they were considered as two separate activity minutes. 
Recordings with only social calls were discarded to avoid a bias 
towards species with higher detection and identification probabil-
ity for social calls. In the following, we use the amount of activity 
minutes as a metric measure to describe bat activity.

2.5  |  Data analysis

We conducted all statistical analyses with the software R (version 
4.0.3; R Core Team,  2021). First, we split the dataset into three 
subsets, one for each foraging guild, because recorded activities 
were quantitatively too different between guilds to be fitted in the 
same model. For each guild, we tested if bat activity (response var-
iable) decreases with increasing proximity to wind turbines. Due to 

the nested structure of our data, we used generalized linear mixed 
models (glmmTMB package; Brooks et al.,  2017) with sampling 
points nested in study site as random effects. We used a negative 
binomial distribution to account for overdispersion (nbinom1 for 
open- and edge-space foragers, nbinom2 for narrow-space forag-
ers) and, apart from that, applied the same model structure for 
all guilds. Models included turbine distance, vertical vegetation 
heterogeneity, canopy height, tree composition, rotor size, forest 
stratum and sampling period as fixed effects. Moreover, we added 
forest edge distance as fixed factor to correct for its potential in-
fluence on the distribution of bats in the studied forests, as well as 
the interactions of turbine distance with sampling period and rotor 
size. We checked the variance-inflation factor (VIF) of the regres-
sion, which assesses for each coefficient whether a correlation 
with other predictors may lead to an increased variance. VIF was 
below 2 for all predictors and we thus excluded multicollinearity 
(car package; Akinwande et al., 2015; Fox & Weisberg, 2019). All 
numerical predictors were standardized to allow direct compari-
son of estimates (Schielzeth, 2010). We worked with full models 
(Tredennick et al.,  2021) and ensured their goodness-of-fit with 
the DHARMa package for residual diagnostics (Hartig, 2020). We 
checked that all models were informative looking at the differ-
ence in AIC value compared to null models and marginal R2 val-
ues (Table  S1). Rotor diameters were not randomly distributed 
across forest sites and small rotors were biased towards decidu-
ous forests. To exclude misinterpretations, we repeated above 
described analyses with only the data obtained from deciduous 
forests, thereby obtaining a balanced representation of rotor 
sizes. Additionally, we tested for potential confounding edge ef-
fects of the turbine clearing on bat activity by applying our model 
to a subset including only data sampled at 250 and 450 m distance 
to the wind turbine. Results did not qualitatively change in the ad-
ditional analyses compared to models based on the complete data 
set (Tables S2 and S3). Accordingly, we considered our original re-
sults to be robust.

3  |  RESULTS

During 5 months of data sampling, we obtained 678 recordings of 
complete nights, out of which 17 did not contain any bat calls. In 
total, we recorded 61,988 activity minutes of which 83% belonged 
to edge-space foragers, 12% to narrow-space foragers and 5% to 
open-space foragers (Table 1).

The activity of narrow-space foragers was almost halved at the 
distance points closest to wind turbines (80 m) compared to 450 m 
distance points (Figure  2, Figure  S1). This distance effect showed 
temporal variation, as it was apparent for the first three sampling 
periods (mid-May to mid-August) and absent for the last sampling 
period (mid-August to mid-September, Figure 3). Furthermore, the 
activity decrease was only observed towards turbines with rotors 
larger than 93 m diameter (Table 2, Figure 4). Activity increased with 
vertical vegetation heterogeneity, but no difference was observed 
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between recordings made at the canopy and ground level. Bats 
were most active between mid-July and mid-September (Table  2, 
Figures S4–S8).

The activity of edge-space foragers did not vary with turbine dis-
tance or rotor size (Figure 2, Figure S2). However, activity was higher 

at the canopy level than at ground level and increased with vertical 
vegetation heterogeneity and with tree height. Edge-space forag-
ers were most active between mid-July and mid-August (Table  2, 
Figures S4–S8).

The overall activity of open-space foragers did neither change 
with the distance to the wind turbine (Figure  2, Figure  S3) nor 
with rotor size. Yet, in the last sampling period (mid-August to mid-
September), we observed an increase in activity minutes close to 
turbines (Figure 5). Activity of open-space foragers was higher at 
canopy than ground level and increased with the proportion of co-
niferous trees in the forest. Bats were most active between mid-July 
and mid-August (Table 2, Figures S4–S8).

4  |  DISCUSSION

We studied bat activity at wind turbines in 24 temperate forests 
in Central Germany and discovered a relationship with turbine dis-
tance, season and turbine size, but different patterns depending on 
bat foraging guild. Strikingly, activity of narrow-space foragers de-
creased with increasing proximity to turbines. This effect was nota-
ble over distances of several hundred metres. Our findings highlight 
that forest-dwelling bats, being at low risk of colliding at turbines, 
might still be affected by wind turbines in forests. This complements 
research from open landscapes, where narrow-space foraging bats 
showed a similar negative response towards wind turbines (Barré 
et al., 2018; Millon et al., 2015). However, our study is the first to 

TA B L E  1  Absolute and median numbers of activity minutes for each foraging guild at the distance points and pooled across recording 
levels

Turbine 
distance 
[m]

N 
sites

All bats Open-space foragers Edge-space foragers Narrow-space foragers

N activity 
minutes

Median (per 
recording)

N activity 
minutes

Median (per 
recording)

N activity 
minutes

Median (per 
recording)

N activity 
minutes

Median (per 
recording)

80 23 13,879 3 688 2 8,609 26 1,263 2

130 24 15,686 4 588 1 9,452 35 1,821 5

250 24 13,161 3 665 2 7,935 35 1,088 4

450 24 18,958 4 700 1 12,838 36 1,989 5

F I G U R E  2  Effects (lines) and 
95% confidence intervals (shades) 
of wind turbine distance on activity 
of three foraging guilds. Asterisks 
denote the significance level of effects 
(***<0.001 < **<0.01 < *<0.05 < n.s.).

F I G U R E  3  Interactive effect (lines) and 95% confidence 
intervals (shaded area) of turbine distance and sampling period on 
the activity of narrow-space foragers.
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confirm this pattern for forests, a highly important habitat from the 
perspective of bat conservation.

4.1  |  Narrow-space foragers: Avoidance of large 
wind turbines

We found that the activity of narrow-space foragers, mainly Myotis 
bats in our study area, decreased significantly towards turbines. This 
is in line with earlier studies on Myotis activity in open landscapes 
(Barré et al.,  2018), even when focussing on small wind turbines 
(Minderman et al.,  2012), highlighting the sensitivity of narrow-
space foragers to wind turbines both in forests and open landscapes. 

Furthermore, we found that the activity decline of narrow-space 
foragers towards wind turbines was weaker in late summer, which 
confirmed the results of another open landscape study compar-
ing wind turbine sites to control sites (Millon et al.,  2015). In our 
study, we observed a distance effect particularly at turbines with 
large rotors. This suggests that avoidance might be caused by 
turbine-generated noise, which is presumably related to turbine size 
and diminishes over distance (Katinas et al., 2016). An adverse ef-
fect of noise on Myotis activity is also implied by a study on small 
wind turbines, where bats were particularly repelled by operating 
turbines (Minderman et al., 2012). Many narrow-space foragers lo-
cate their prey passively by detecting acoustic cues (Denzinger & 

TA B L E  2  Estimates and p-values of the effects on call activity of three foraging guilds. Significant effects (p-value < 0.05) are shown in 
bold

Variables df

Open-space foragers Edge-space foragers
Narrow-space 
foragers

Chi2 p-value Chi2 p-value Chi2 p-value

Turbine distance 1 1.6 0.202 0.4 0.521 18.0 <0.001

Recording level ‘canopy’ 1 27.5 <0.001 35.5 <0.001 3.1 0.080

% conifers in forest 1 8.9 0.003 3.6 0.057 0.1 0.765

Vertical vegetation structure 1 1.3 0.258 21.1 <0.001 10.9 0.001

Rotor diameter 1 0.3 0.560 1.4 0.238 0.2 0.898

Canopy height 1 1.6 0.201 14.5 <0.001 0.4 0.733

Forest edge distance 1 0.7 0.387 1.2 0.288 2.6 0.106

Sampling period 3 51.1 <0.001 41.9 <0.001 75.7 <0.001

Turbine distance × sampling period 3 10.9 0.012 0.3 0.955 19.4 <0.001

Turbine distance × rotor diameter 1 1.99 0.158 3.6 0.057 4.7 0.0295

F I G U R E  4  Interactive effect (lines) and 95% confidence interval 
(shaded area) of wind turbine distance and rotor size on the activity 
of narrow-space foragers.

F I G U R E  5  Interactive effect (lines) and 95% confidence 
intervals (shaded area) of turbine distance and sampling period on 
the activity of open-space foragers.
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Schnitzler,  2013). Therefore, these bats tend to avoid noisy envi-
ronments, suggesting either a masking of prey sounds by anthro-
pogenic sound emissions (Schaub et al., 2009) or a startling effect 
(Luo et al., 2015). In conclusion, we found a hitherto unknown avoid-
ance behaviour of narrow-space foragers towards wind turbines in 
forests, indicating an indirect habitat loss for bats of this functional 
guild, possibly caused by noise.

4.2  |  Edge-space foragers: No effect of 
wind turbines

For edge-space foragers, which were mostly P. pipistrellus in our 
study, we neither found support for avoidance of, nor attraction to-
wards wind turbines in forests. In contrast, recent open landscape 
studies observed a strong decrease in the activity of P. pipistrel-
lus at hedgerows with decreasing distances to turbines on the one 
hand (Barré et al., 2018), and an increased activity at wind turbine 
sites in comparison to control sites on the other hand (Richardson 
et al.,  2021). Possibly, the discrepancy between findings may be 
explained by different habitat matrices. Specifically, the erection 
of wind turbines in forests creates clearings and a network of edge 
structures which is an ideal foraging habitat for edge-space forag-
ers. Indeed, it was observed that members of the edge- and open-
space foraging guild were more active in spruce plantation after 
clear-cuttings (Kirkpatrick et al., 2017). In conclusion, clear-cutting 
for turbine construction probably poses a spatially restricted benefit 
for edge-space foragers.

4.3  |  Open-space foragers: Seasonal attraction to 
wind turbines

Activity of open-space foragers did not change in relation to tur-
bine distance except for an activity increase with increasing tur-
bine proximity in late summer. Our overall findings contrast with a 
previous open-landscape study that showed decreased activity for 
N. leisleri, but not for N. noctula and E. serotinus close to turbines 
(Barré et al., 2018), suggesting that open-space foragers might not 
be coherent in their responses to wind turbines. Different responses 
may even be related to intraspecies variation across bat individu-
als, as was suggested by GPS tracking studies on N. noctula around 
wind turbines (Reusch et al.,  2022; Roeleke et al.,  2016). In con-
trast, our finding of open-space foragers being attracted to wind 
turbines in late summer aligns with numerous previous studies sug-
gesting an attraction effect of wind turbines on open-space forag-
ers, hypothesizing various, yet untested causes (Guest et al., 2022). 
Given the seasonality of the attraction, open-space foragers pos-
sibly confuse forest turbines with tall trees, when searching for 
orientation points or stop-over roosts during fall migration (Cryan 
et al., 2014; Jameson & Willis, 2014). However, a recent study from 
Northern Germany shows an avoidance behaviour of N. noctula in 
late summer towards wind turbines, which argues against a general 

attraction of open-space foragers towards turbines in this season 
(Reusch et al., 2022). In conclusion, we could not confirm avoidance 
behaviour towards turbines for the entire guild. Yet, our findings of 
a seasonal attraction to turbines in forests are of high relevance in 
context of collision risks for open-space foragers.

4.4  |  Diverse vegetation structure enhances 
bat activity

High activity of edge- and narrow-space foragers coincided with 
heterogeneous vertical vegetation structure. Similar positive effects 
of different measures of vegetation structure on forest-associated 
bats have been shown before and can be explained by a higher avail-
ability of microhabitats (Adams et al., 2009; Langridge et al., 2019; 
Müller et al.,  2013). Furthermore, activity of edge-space foragers 
increased with tree height, suggesting a preference for more ma-
ture forest stands, probably due to their dependency on semi-open 
foraging habitats which rarely occur in early succession stages. In 
contrast, activity of open-space foragers was not affected by verti-
cal vegetation structure or tree height, indicating that forest veg-
etation parameters are less important for aerial hawkers. For most 
bats, we observed a higher activity in the canopy than near-ground, 
confirming that the forest canopy is an important bat habitat 
(Adams et al., 2009; Erasmy et al., 2021; Müller et al., 2013; Plank 
et al., 2012). Lastly, we found a similar activity of most bats in mixed 
and coniferous forests which is consistent with a recent study sug-
gesting that bats can find suitable roosts even in monocultural forest 
plantations (Buchholz et al., 2021). In conclusion, our findings indi-
cate that forests with diverse vegetation structure present valuable 
habitats for a variety of bats, while forest type alone seems to be 
less important. The high activity of open-space foragers in conifer-
dominated forests is likely related to high proportions of standing 
deadwood and clearances in these forests, leading to reduced atten-
uation of echolocation calls and an increased recording probability 
(Lawrence & Simmons, 1982).

5  |  CONCLUSIONS

Our study highlights that the activity of forest-associated bats de-
clines towards wind turbines at forest sites. Narrow-space foragers 
such as Plecotus spp. and Myotis spp. seemingly avoid wind turbines 
in forests and show reduced activity by about 50% from 450 to 80 m 
turbine distance. This avoidance is possibly caused by habitat degra-
dation triggered by turbine-generated noise, since it was strongest 
towards turbines with large rotors. Consequently, legally protected 
forest bat specialists lose large habitat areas when wind turbines are 
erected at forest sites. Hence, we argue that this habitat loss should 
be compensated by taking nearby old forest stand out of forestry 
use, thus creating refugia for forest specialist bats. We also plead 
for a general caution when siting wind turbines in forests, since the 
response of bats was independent of vegetation structure and tree 
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composition. We do not necessarily argue for a complete ban of wind 
energy production in forests, because in some countries there is lit-
tle other option for renewable energies. Where absolutely necessary, 
turbines should only be built in managed forests with low vertical 
vegetation heterogeneity, as bat activity is expected to be low in 
these forests. This approach would most likely also account for birds 
and insects, which have been reported to die in considerable numbers 
through wind turbines (Thaxter et al., 2017; Voigt, 2021). However, as 
forest-related studies on birds and insects are still lacking, we urge to 
fill these research gaps to provide a basis for comprehensive recom-
mendations on wind energy development in forests.
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