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Cover (from top left, following arrows).  Graphic representation of (A) the process of modeling 
carcass density as a function of distance, (B) applying that modeling in all directions around 
the turbine, (C) selecting only those areas that were searched, and (D) integrating to give a 
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Accounting for the Fraction of Carcasses Outside the 
Searched Area in the Estimation of Bird and Bat Fatalities 
at Wind Energy Facilities

By Daniel Dalthorp,1 Manuela Huso,1 Mark Dalthorp,2 and Jeffrey Mintz,1

Abstract
Accurate estimation of bird and bat mortality at wind energy facilities requires accounting for carcasses that lie outside 

the search plots because they lie beyond the search radius or in areas within the search radius that remain unsearched due to 
sub-optimal search conditions such as thick vegetation, rough or dangerous ground, water, or restricted access to the land. 
However, carcass density is not constant around a turbine and the fraction of carcasses within the unsearched area can vary 
greatly depending on where the area lies relative to the turbine. The density-weighted proportion approach takes into account the 
changing density of carcasses around turbines to estimate the fraction of carcasses lying in unsearched areas (dwp). It involves 
tallying the carcasses found in concentric rings centered at the turbine, fitting a curve to the carcass densities in the rings, and 
dividing the integral of the curve over the area searched by the integral over the total area. Accounting for unsearched area 
presents special difficulties such as extrapolation beyond the search radius, spatial prediction, and model selection, which are 
frequently ignored or under-appreciated, potentially resulting in substantial estimation errors.

A powerful new R software package (dwp) is available to perform the calculations, given the distances at which carcasses 
were found from turbines and a map of the searched area used to discern the fraction of the ground searched at each distance. 
If all ground within a given search radius has been searched, the map is simply the search radius. For more complicated search 
plots, other kinds of maps may be used: R polygons for plots that can be readily delineated into searched and not-searched areas 
(for example, searches restricted to access roads and turbine pads), GIS shape files for complicated search patterns (for example, 
non-uniform vegetation or ground texture resulting in spatially varying search conditions), or raster files for complicated search 
patterns coupled with carcass spatial distribution that depends on both distance and direction from turbines.

This study discusses estimation and interpretation of dwp in the context of several realistic examples; provides guidance for 
use of the dwp software for doing the analyses; and addresses questions of extrapolation, spatial prediction, and model selection.

Overview
Estimation of bird and bat mortality at wind energy facilities typically involves periodic searches for carcasses on the 

ground near turbines and adjustment of the carcass count to account for the estimated fraction of carcasses missed in the 
searches. In order for a carcass to be observed, it must lie inside the area searched, persist until the time of search, and be 
found by searchers. Conceptually, the total mortality (M) is estimated as  =

× ×
xM

dw pr SE
, where x is the number of carcasses 

observed, dwp is the fraction of carcasses lying inside the searched area, r is the probability a carcass persists until the search, 
and SE is the searcher efficiency or probability that a carcass is found given that it is present in the searched area at the 
time of the search. Searcher efficiency and carcass persistence typically are estimated from data collected in field trials and 
combined into an estimated detection probability, ​​ ̂  g ​ ​. The number of carcasses lying inside the searched area is then estimated 
as ​​​   M ​​ inside​​  =  x / ​ ̂  g ​​.

1U.S. Geological Survey

2Cornell University
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The techniques and models for estimating g tend to be complicated, but there are several convenient R packages available 
to aid in the estimation of SE, r, g, and ​​ M ​|​​ ​{x, ​   g ​}​ ​​. The most flexible and powerful is GenEst (Dalthorp, Madsen, and others, 
2018; Dalthorp, Simonis, and others, 2018; Rabie and others, 2021), whereas eoa (Dalthorp and others, 2017) is specially 
designed for accuracy and utility when carcass counts are very small or even 0. Several other packages are available as well 
(Huso and others, 2012; Wolpert and Coleman, 2015; Korner-Nievergelt and others, 2015). However, in mortality estimation, 
dwp is as influential as SE and r, but estimation of dwp has received relatively little attention in the literature and in mortality 
estimation protocols despite its importance. Mortality estimates that are derived from careful and accurate estimation of SE 
and r and from careful and accurate modeling of g can still be grossly inaccurate unless dwp also is carefully and accurately 
accounted for. Shortcuts in dwp estimation are likely to result in unreliable mortality estimates. Estimation of dwp presents 
special difficulties such as extrapolation outside the search radius, spatial prediction and model selection, which are discussed in 
this report and addressed by the dwp software package for R (Dalthorp and Huso, 2022).

We refer to the fraction of carcasses lying inside the searched area as the density-weighted proportion (dwp) after Huso and 
others (2012). It is sometimes also referred to as the area correction factor (AC) (Studyvin and Rabie, 2022, or spatial coverage 
(a) (Dalthorp and others, 2017). Estimates of dwp (or AC or a) can be used with GenEst (as the dwp parameter) or eoa (as the 
a parameter) in estimating mortality. Additionally, the dwp package provides an extensive set of tools for analyzing carcass 
density as a function of distance from turbine which may be of interest beyond estimating mortality at a particular site and may 
be used in more general studies of carcass dispersion at wind energy sites under a variety of conditions. Here we present (1) 
a set of tutorials on the use of dwp software and a set of appendixes that provide greater detail on the models used in the dwp 
software, the performance of the models and difficulties of model selection under a wide variety of conditions; (2) the theoretical 
foundations of the models used in the dwp software; and (3) extensive simulation studies to investigate estimator performance 
and model selection under a wide variety of conditions.

We begin with a brief discussion of terminology, general concepts, difficulties, special techniques used in dwp analysis, and 
the array of command line tools that dwp (1.0.1) provides. Section, “General Principles” gives a brief introduction to the main 
tasks and a discussion of some critical issues to consider in estimating dwp. More detailed discussion of data requirements and 
formatting is included in sections, “Site Layout—Raw Data,” “Site Layout—Formatted Data,” and “Examples.” The second half 
of the document is a set of technical appendixes, discussing details about the models used in dwp (app. 1); simulated carcass 
distributions used in testing the models (app. 2); model performance in the simulation scenarios (app.3); and additional technical 
details about dwp and the accuracy of confidence intervals for ѱ (probability that a carcass lies in the searched area), dwp, and M 
(app. 4 and 5).

General Principles

Carcass Dispersion

After being struck and killed by a turbine blade, where a carcass will land is a function of many factors, such as wind 
velocity, turbine blade speed, strike angle on the blade, carcass size, carcass cross-sectional area presented to the wind, wind 
shear, initial velocity of the carcass after being struck, and others. After landing, the carcass may be susceptible to being moved 
by scavengers, gravity, or wind, or—in cases where the animal is not immediately killed upon impact—it may hobble some 
distance seeking shelter.

The factors affecting carcass location are numerous and complex. Regardless of which combination of factors are in 
operation and in what ways, a general principle of carcass dispersion remains the same, namely, that carcass densities on the 
ground decrease with distance because (1) fewer carcasses fall at great distances from turbines than near turbines, and (2) 
carcasses are spread over greater areas at greater distances from turbines. Although the change in density with distance is not 
always monotone, and near the turbine density may actually increase with distance over a short range, there is a limit to how far 
carcasses will fall from a turbine, and the density of carcasses generated by a turbine will inevitably decrease to zero at great 
distances from the turbine.

Because carcass density varies, a simple area correction that divides the carcass count by the fraction of the area sampled 
to get, for example ​​ ̂  M ​  =  x / 0.75​ because 75 percent of the area was sampled, is highly prone to error (Huso and others, 2011; 
Huso and Dalthorp, 2014). For example, locations of 100 carcasses with a gradual decrease in carcass density with increasing 
distance from the turbine are shown in figure 1. The designated search plot area is a square, 200 meters (m) on a side, centered 
at the turbine. If 25 percent of the area is not searchable, the area correction depends strongly on which 25 percent is not 
searched. For example, each shade of gray constitutes 25 percent of the total area in the 200 m × 200 m square. If the gray 
area near the outer edge of the plot is the 25 percent that is not searched, then the simple area correction would estimate M 
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Figure 1.  Carcass locations relative to turbine. Areas with shades of gray each constitute 25 percent of the area in a 200-meter 
square plot centered at the turbine.

as ​​ ̂  M ​  =  98 / 0.75  =  130.7​, which substantially overestimates the actual mortality of M = 100. If, instead, the gray area in the 
center is the 25 percent not searched, then ​​ ̂  M ​  =  31 / 0.75  =  41.3​, which vastly underestimates M. Clearly, a more reliable 
solution than simple area correction is needed.

Accounting for Unsearched Area

The dwp package fits statistical models of the patterns of change in carcass density with distance from turbines and uses 
the models to predict what fraction of carcasses lie inside the searched area. Given a list of the locations at which carcasses were 
discovered and a map of the searched area, the prepRing function3 tallies the carcasses in concentric 1-meter (m) rings and 
estimates the carcass density in each ring by dividing the carcass count by the area sampled at that distance (fig. 2A).

Then, ddFit is used to fit a curve to the carcass densities (fig. 2A, solid curved line) and rotate the curve around the 
turbine to create a volcano-like surface of relative carcass densities (fig. 2B)4. After proper normalization (which is done 
automatically by ddFit), the volcano surface is a probability density function (PDF) that shows the relative carcass density 
at each point. The total volume of the volcano represents 100 percent of the carcasses, and the volume under a specific area 
represents the probability that a carcass will lie in that area.

3This introductory section is limited to a simple outline of the main processes involved in a dwp analysis. Details for formatting and importing data and using 
the functions in the dwp package are discussed in detailed examples in later sections. The figures shown in this section are meant as simple heuristics, and the 
dwp package does not produce similar pictures.

4The rotation is done mathematically, and there is no dwp function for creating such “volcano plots.”
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Figure 2.  Estimations of proportion of carcasses lying inside the searched area. A, Carcass density as a function of distance from the 
turbine. B, Relative carcass density in the area around the turbine, normalized so that it integrates to 1. C, Area searched. D, Relative 
density for the area searched. The fraction of carcasses lying inside the searched area is the normalized relative carcass density 
integrated over the searched area.

For example, the searched area at the turbine in figure 2 is an irregularly shaped stripe down the middle. The probability 
of a carcass lying inside the searched area (ѱ) is the volume of the volcano above that area (fig. 2D) and is calculated 
using estpsi.

Although the basic idea is fairly straightforward, there are some nuances that are easy to overlook or whose importance is 
easy to discount. In particular, estimating how many carcasses lie outside the search radius requires extrapolation well beyond 
the range of the data, which is always hazardous. Furthermore, constructing proper confidence intervals for the fraction of 
carcasses inside the searched area (dwp) requires accounting for the (1) uncertainty in the probability that a carcass lies inside 
the searched area (ѱ) and (2) uncertainty in the actual number of carcasses inside the searched area given ѱ. The complications 
involved in extrapolation are discussed in general in section, “Extrapolation Outside the Searched Area.” Examples and 
discussion of tools for resolving the complications are given in section, “Examples,” and an extended theoretical discussion 
is presented in appendix 3. For the reader who is curious about the technical details of how the estimation uncertainties are 
accounted for and accurate confidence intervals are constructed by estpsi and estdwp, the theory is presented and tested in 
appendix 5.
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Model of Carcass Density

In the dwp package, estimation of the fraction of carcasses that lie inside the searched area involves three general tasks:
1.	Modeling carcass density as a function of distance from the turbine and integrating over the searched area,

2.	Extrapolating carcass density models to areas outside the search radius, and

3.	 Incorporating the uncertainties that are inherent to the estimation process into the final estimates of dwp.
The choice of models to use is influenced by the need to prevent over- or under-estimation of tail probabilities during 

extrapolation. dwp provides several checks to help avoid selection of unrealistic models—extensibility, tail plausibility, and 
high influence filters (discussed in section, “Tools for Model Selection”). The models remaining after filtering can be further 
compared using AICc; however, AICc must be used with discretion as it is an unreliable measure of model performance outside 
the search radius, as demonstrated in appendix 3.

The model selection and filtering process are guided by several principles or assumptions:
1.	Distribution of distances of carcasses from turbines belongs to an exponential family (app. 1);

2.	Number of animals killed by a turbine is finite, and consequentially there exists a radius beyond which very few of those 
animals will be found; and

3.	Models should not be overly sensitive to any single observation or data point.
Together, these principles guide us toward a collection of distributions and rules by which to select from the collection for 

further comparison.
A set of homogeneity assumptions about carcass dispersion ensures accuracy of the estimates and inferences:

1.	Fatality rates do not vary among turbines,

2.	Carcass distributions do not vary among turbines, and

3.	Carcass distributions do not depend on direction (isotropy).
These assumptions allow for straightforward pooling of the carcasses across turbines to fit a single carcass distance model 

that can be applied to an entire site. Once a model for a site is selected, dwp can be estimated for each turbine. Even if the same 
distance model is used for the entire site, dwp will typically vary among turbines, depending on the size and shape of the search 
plots. If the homogeneity assumptions are not met, the analysis may require additional steps to ensure accuracy.

Homogeneity of Fatality Rates Among Turbines
Homogeneity of rates does not mean that the actual number of fatalities must be identical at all turbines but that the 

numbers do not vary significantly. In this context, it is difficult to precisely define “significantly” because the effect that variation 
in rates has on the model depends on the sizes, shapes, and characteristics of the search plots, and tolerance for potential bias 
depends on the objectives of the research. In theory, variation in rates can adversely affect accuracy. In practice, however, even 
substantial variation in mortality rates among turbines will rarely cause significant inaccuracies in estimating dwp.

•	 If the sizes and shapes of the search plots are identical among the turbines and the detection probabilities are the same, 
then homogeneity of rates is not necessary. The resulting fitted model will be the same regardless of the degree of 
variation in rates among turbines.

•	 If search plot shapes vary widely among turbines and plot shapes are correlated with fatality rates, then there is potential 
for modest bias due to heterogeneity of fatality rates. An example of how this might occur would be if turbines that are 
known or strongly suspected to have lower than average fatality rates are searched on roads and pads only, whereas 
turbines with relatively high fatality rates are searched on cleared plots with a large search radius.

•	 If search plot size and shape does not correlate with mortality rate, then the potential for bias due to lack of homogeneity 
fatality rates is greatly reduced.
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Homogeneity of Carcass Distributions Among Turbines
Variation in wind patterns, turbine types, turbine operations (for example, curtailed versus uncurtailed), carcass type, and 

other factors may result in variation in carcass dispersion patterns. We refer to factors that vary among turbines or carcasses 
and that influence the actual carcass distributions as interacting covariates. These factors can be explicitly accounted for in the 
carcass distance models when the search plot layouts are imported from shapefiles or as x-y coordinates on a grid. With the 
simpler data types (list of distances, simple geometry, or R polygons), interacting covariates can be accounted for by fitting 
separate models for different levels of the covariate. For example, bats and small, medium, and large birds may each require 
their own models; likewise for curtailed and uncurtailed turbines, large turbines and small turbines, site A and site B, etc.

Homogeneity of Carcass Distributions in Each Direction
Variation in carcass distributions by direction from a turbine is referred to as anisotropy. If not accounted for, anisotropy 

can be a significant source of bias when the shapes of the search plots also vary by direction. Accounting for anisotropy 
introduces a considerable degree of statistical complexity along with more extensive data requirements. Perhaps the most 
straightforward and flexible way to account for anisotropy would be via Poisson regression of carcass counts on a coordinate 
grid, as discussed in Maurer and others (2020). The dwp package (version 1.0.1) does not include special functions for handling 
anisotropy.

Extrapolation Outside the Searched Area

There is a wide variety of possible approaches that could be used to model carcass density as a function of distance from 
turbine. Any approach to fitting a distribution will need to account for carcasses that lie outside the search radius and beyond 
the scope of data and will thus require extrapolation. All approaches will be faced with the inherent difficulty that model 
performance within the range of data may tell little to nothing about how well it will perform outside the range of the data. 
Traditional model selection criteria such as AIC (Akaike, 1974; Burnham and Anderson, 2002), likelihood ratio tests (Vuong, 
1989), stepwise regression (Efroymson, 1960), cross-validation (Allen, 1974) and others have limited utility when a significant 
fraction of carcasses lies outside the search radius. In fact, two models, A and B, that are equally plausible in theory and are 
virtually indistinguishable within the range of data may be radically different outside the range of data, giving wildly different 
estimates of the fraction of carcasses inside the searched area.

The dwp package fits a large number of probability distributions in the exponential family (Andersen, 1970), including 
the well-known and named exponential, gamma, normal, lognormal, Rayleigh, Maxwell-Boltzmann, inverse gamma, inverse 
Gaussian, normal-gamma, Pareto, and chi-squared models and several unnamed models, which we designate with names 
like “xep1” and “xep012.” Detailed knowledge of the models is not required for understanding the difficulties inherent in 
extrapolation outside the search radius, but for the curious reader, further details about the models and our techniques for fitting 
them are discussed in appendix 1.

The example discussed in this section illustrates some important general concepts and issues involved in determining the 
fraction of carcasses inside the searched area, and by extension, the fraction outside that will be missed. Most notably,

1.	Predicting the number or fraction of carcasses lying outside the search radius requires extrapolation or assumption;

2.	Two (or more) models that are in close agreement inside the range of the data may have radically different behaviors 
outside the search radius;

3.	Criteria that draw on knowledge about carcass ecology (for example, the number of carcasses is finite and a very small 
fraction of carcasses will lie beyond 150 or 200 m from their turbine) are a necessary complement to traditional criteria 
(like AICc, high-influence points) for assessing model suitability; and

4.	The modelFilter function performs a suite of diagnostic tests and ranks the models by suitability.
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Example Data
Problems with extrapolating fitted models outside the search radius are illustrated clearly in an example dataset in which 

100 carcass locations were simulated. Distances were drawn from a gamma distribution in which one-half the carcasses are 
expected to fall within 41 m of the turbine and 82 percent within 80 m. Searches were conducted in a circular plot centered at 
the turbine and with radius 80 m. All 81 carcasses inside the search radius were found and none of the 19 carcasses outside the 
search radius were found (fig. 3). The dwp package was used to fit 17 models from the exponential family of distributions.

Slightly Outside the Search Radius—Radical Divergence Among Models
All but a few (constant density, chi squared, Maxwell-Boltzmann, and inverse Gaussian) of the 17 models pictured in 

figure 4, appear to provide fairly close fits to the carcass data inside the 80-m search radius (fig. 4, gray bars), but just outside the 
search radius there is wide divergence among the models (fig. 4, lines). Although the vast majority (81 percent) of the carcasses 
lie inside the search radius, there is no guarantee that the models can accurately predict the final 19 percent of carcasses that 
lie outside the search radius. Indeed, the actual fraction of carcasses lying inside the search radius is 81 percent, but the models 
predict anywhere from 0 to 100 percent (​​ ̂  ψ ​​ in table 1), depending on the model.
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Figure 3.  Simulated carcass locations relative to the nearest turbine. The turbine is at the center of a circular search plot with 
a radius of 80 meters. There are 81 carcasses inside the search radius (all were found) and 19 outside the search radius (none 
were found).
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Figure 4.  Histogram of simulated data and model spatial predictions of relative carcass density.

Highly Limited Utility of the Akaike Information Criterion for Model Selection
A traditional staple in model selection is the Akaike information criterion or AIC (Burnham and Anderson, 2002), which 

is a measure of how well a model fits the data given the number of parameters in the model. We use AICc, which is a slightly 
modified version of AIC that may be more accurate than AIC when sample sizes are small (Cavanaugh, 1997). To facilitate easy 
comparison of models, we define ΔAICc as the difference between a model’s AICc score and the minimum of the AICc scores of 
all models to be compared. The model with the most parsimonious fit has ΔAICc=0 and serves as the standard for comparison.

Thus, ΔAICc confirms the visual impression that the constant, chi-squared, and Maxwell-Boltzmann models give relatively 
poor fits to the data (fig. 4). Among the remaining models, it is not clear which provide the best fits to the data inside the search 
radius. AICc does capture some of the subtle distinctions among the model fits inside the range of data. However, outside the 
range of the data, the models diverge radically from each other, with the estimated fraction of carcasses lying inside the search 
radius ranging from 0 to 93 percent for the models with ΔAICc < 3. AICc provides no guidance for assessing model performance 
beyond the search radius.

As a rule of thumb, for two models that differ by more than about 7 in AICc, the one with the smaller AICc is preferable, 
and models with scores differing by less than about 2 are often considered statistically indistinguishable by this measure 
(Richards, 2005). If we only consider models with ΔAICc < 2, the range of estimated proportions of carcasses inside the search 
area narrows only slightly, to 0–84.3 percent. It is evident that AICc has extremely limited utility5 in distinguishing among 
models and their ability to extrapolate accurately. AICc measures only the quality of the fit of a model within the range of data 
and offers no guidance on performance outside the range of the data. Additional selection criteria are essential (see section, 
“Model Filter—Extensibility”).

5That utility may even be exaggerated in this example because the ΔAICc<2 is far too restrictive, eliminating from consideration some models that appear 
to provide only marginally poorer quality fits within the range of data than the “best” models but without regard to the shapes of the curves outside the 
range of data.
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Table 1.  Diagnostic statistics for 17 models shown in figure 4.

[k: Number of parameters in the model. ΔAICc: Difference between a model’s AICc and the lowest AICc among the models tested. (AICc is Akaike information 
criterion corrected for finite sample size.) Extensible: Extensibility test. ψψ : Estimated probability that a carcass lies inside the searched area. M : Estimated 
total number of fatalities. Inf, the model’s density prediction did not converge to 0. Tail weight: Indicator of whether the right (R) and left (L) tail probabilities 
of the distribution are plausible (1) or not (0). HI: Indicator of whether the model is free of points with high influence (HI = 1). Data points with high influence 
on a model (HI = 0) cast doubt on the reliability of the model]

Model 
(fig. 4)

k ΔAICc Extensible ψψ M
Tail weight

  R   L HI

xep1 2 0.00 1 0.614 131.9 0 1 1
truncated normal 3 0.54 1 0.843 96.1 1 1 1
xep0 (Pareto) 2 0.56 0 0.000 Inf 0 1 0
xep02 3 0.87 1 0.695 116.5 1 1 0
xep01 (gamma) 3 1.33 1 0.451 179.6 0 1 0
xep2 (Rayleigh) 2 1.49 1 0.836 96.9 1 1 1
xepi0 (inverse gamma) 3 1.61 0 0.000 Inf 0 1 0
lognormal 3 1.70 1 0.033 2,454.5 0 1 0
xep12 3 2.13 0 0.000 Inf 0 1 1
exponential 2 2.64 0 0.000 Inf 0 1 1
xep012 4 2.67 1 0.820 98.8 1 1 0
xep123 4 2.68 1 0.934 86.7 1 1 0
xep0123 (normal-gamma) 5 4.69 1 0.913 88.7 1 1 0
inverse Gaussian 3 6.52 0 0.000 Inf 0 1 0
Maxwell-Boltzmann 2 18.22 1 0.931 87.0 1 1 1
constant 1 19.82 0 0.000 Inf 0 1 1
chi-squared 2 380.85 1 1.000 81.0 1 0 1

Tools for Model Selection

With a closer look at the model predictions in figure 4 and closer consideration of what is known about carcass dispersion 
around turbines, we can filter out most of the obviously poor choices, but we should do so without reference to the white bars in 
the histogram because they are from carcasses outside the search radius, data that we normally would not have access to.

The modelFilter function performs a series of tests to aid in model selection and returns the results in a convenient 
format, greatly reducing or even eliminating the guesswork. The tests are intuitive, easy to understand, and easy to implement.

Model Filter—Extensibility
If we assume that the number of carcasses is finite, we can eliminate from consideration all models that do not converge 

to zero or do not converge fast enough to guarantee that the estimated number of carcasses outside the search area is finite. We 
refer to models that predict a finite number of carcasses outside the searched area as extensible because they can be extended 
outside the search radius to give properly defined probability distributions6. Typically, models that are still increasing outside the 
search radius are non-extensible, and models that are decreasing are extensible (figs. 4 and 5A).7

The estimated fraction of carcasses inside the search radius for non-extensible models is an impossible 0 percent. Among 
the extensible models—which, for this data, include the truncated normal, gamma, Rayleigh, log- normal, Maxwell-Boltzmann, 
normal-gamma, chi-squared, xep1, xep02, xep012, and xep123—the estimated fraction ranges from a merely implausible 3.3 to 
100 percent (table 1).

6This is discussed further in sections, “Extrapolation Outside the Searched Area” and “Examples,” and in appendix 1.

7The rule is not hard and fast. Sometimes a non-extensible model decreases outside the search radius but at too slow a rate; sometimes an extensible model 
may still be increasing at the search radius but is decreasing rapidly shortly thereafter. These are exceptional situations. They may be rare but they are not 
impossible.
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Figure 5.  Criteria for filtering out poor model choices for extrapolating beyond the range of the data and predicting proportion of 
carcasses outside the search radius. A, Extensible models. B, Extensible models, plausible tails. C, Extensible models, plausible 
tails, and no high influence points. D, Extensible models, plausible tails, no high influence points, and ΔAICc less than 10. AICc, 
Akaike information criterion corrected for finite sample size; ΔAICc, difference between a model’s AICc and the lowest AICc among 
the models tested.
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Extensibility is a relatively permissive criterion that excludes only the most grossly inadequate models. Several dwp 
package functions automatically test for extensibility. Most notably, ddFit tags all fitted models as either extensible 
($extensible = 1) or not extensible ($extensible = 0), and modelFilter returns a table of test results (including 
extensibility) for arrays of models to be compared.

Model Filter—Tail Plausibility
Because gravity acts so inexorably on carcasses after turbine strikes, few carcasses are expected beyond 150 or 200 m 

(although this number will likely increase as turbines increase in height and rotor diameter.) However, because the search 
plots are inevitably finite and the models are fit with spatially limited data, sometimes a fitted model will perform well inside 
the search radius but have implausible tails, predicting far too many carcasses at great or short distances. A rough filter for tail 
plausibility identifies obviously inappropriate models. By default, models that predict that more than 1percent of carcasses lie 
beyond 200 m or more than 5 percent beyond 150 m fail the modelFilter for a plausible right tail.8 For this dataset with the 
default settings, the filter eliminates the gamma, lognormal, and xep1 models (table 1), which were extensible but predict too 
many carcasses at great distances from the turbine to be plausible. For example, the lognormal predicts that 93.8 percent of the 
carcasses fall beyond 150 m, whereas the gamma and xep1 models predict 25.3 and 90 percent, respectively.

Because of the great size and height of turbines, we would expect a substantial fraction of carcasses to lie beyond 20 m 
and a significant fraction beyond 50 m. By default, modelFilter identifies models that predict that more than 50 percent of 
the carcasses lie within 20 m or more than 90 percent within 50 m as having implausibly heavy left tails. By this criterion, the 
chi-squared model is eliminated from further consideration for this dataset (table 1).

The tests of tail plausibility further narrow the range of the estimated proportion of carcasses inside the search radius from 
3.3–100 percent to 69.5–93.4 percent (table 1), which is still a wide range but a vast improvement over using the extensibility 
criterion by itself (fig. 5).

Model Filter—High Influence Points
In some cases, the apparently good fit of a model may strongly depend on one or a small set of data points, so that 

removing one or a small number of data points has a strong impact on the shape of the fitted model. The presence of these high 
influence points (Davison and Hinkley, 1997; Canty and Ripley, 2021) casts considerable doubt on the reliability of the model 
for the given dataset. Extrapolation would be especially worrisome for such models because their shapes are strongly dependent 
on one or a small number of fickle data points, and the effects would be felt well beyond the range of the data.

Several of the extensible models with plausible tails have points with high influence—the xep02, xep012, xep123, and 
normal-gamma models (table 1). Removing these from consideration further narrows the range of estimated proportions of 
carcasses inside the searched area to ​​   ψ ​​ ∈ (0.836, 0.931) (table 1) and eliminates much of the remaining clutter from the graphs 
of models still under consideration (fig. 5B–5C).

Model Filter—AICc
After models with implausible extrapolations or worrisome instabilities have been filtered out, criteria like AICc that 

measure the quality of a model’s fit strictly within the range of the data are useful for distinguishing among plausible models. 
AICc and other internal criteria are especially valuable when there are substantial unsearched areas inside the search radius, as 
would be the case with road and pad searches (Maurer and others, 2020) or with sites with forest or other thick vegetation, water, 
cliffs, poisonous snakes, or other features that render much of the area around turbines practically unsearchable. Predicting the 
proportion of carcasses in unsearched areas inside the search radius is an interpolation problem rather than extrapolation, and 
the quality of the fit to the data inside the search radius is directly relevant in a way that it is not when extrapolating outside the 
search radius.

In an extensive simulation study of the accuracy of carcass distribution models (app. 2 and 3), AICc was generally a poor 
guide for gaging the relative adequacy of models for extrapolating outside the search radius. Under some of the conditions 
tested, models with low AICc correlated with more accurate extrapolations; under other conditions, low AICc was correlated 
with less accurate extrapolations. However, under most conditions, there was no apparent correlation between AICc and 

8If desired, users may override these default settings.
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suitability for extrapolation. One exception was that models with ΔAICc greater than (>) 10 frequently performed worse than 
models with ΔAICc < 10. For this reason, modelFilter compares model AICc scores and, by default9, identifies and filters 
out models with ΔAICc > 10.

After filtering out the lone extensible model with plausible tails, no high influence points, and ΔAICc > 10 (namely, the 
Maxwell-Boltzmann model), the two remaining models—truncated normal and Rayleigh—predict that, respectively, 84.3 and 
83.6 percent of the carcasses lie inside the searched area. Both are in good agreement with the generating model in which 82 
percent of the (simulated) carcasses are expected to lie inside the searched area. The fitted models closely match each other and 
appear to be good fits to the data (fig. 5). Also, the difference in their AICc scores is only 0.95, which is too small to make a 
statistically meaningful distinction between the models.

Standard Models
Several of the distributions are not well suited for modeling carcass distances. These include the inverse gamma (xepi0), 

inverse Gaussian, chi-squared, Pareto (xep0), and the exponential distributions. Because these distributions would rarely (if 
ever) be among the most appropriate models for carcasses, they are excluded from the dwp package’s list of 12 “standard” 
distributions but can still be used if specifically invoked. The standard models, which include xep1, xep01 (gamma), xep2 
(Rayleigh), xep02, xep12, xep02, xep123, xep0123 (normal-gamma), truncated normal, Maxwell-Boltzmann, lognormal and 
constant, are the primary focus of this report. All the models are defined and briefly discussed in appendix 1.

Summary
In general, when a significant fraction (for example, >10 percent) of carcasses are expected to lie outside the search radius 

and extrapolation is necessary to estimate the fraction of carcasses lying in the searched areas, it is essential to consider the 
suitability of models for extrapolation, using broad criteria like extensibility, tail plausibility, and stability (for example, the 
presence of high-influence points) before considering strictly internal criteria like AICc. If the search radius is long enough 
so that few carcasses are expected outside the search radius and a substantial fraction of the area inside the search radius is 
unsearched, then AICc and high-influence points become the critical criteria.

To determine which models are likely to perform well or poorly in predicting carcass numbers outside the search radius, it 
is necessary to step beyond traditional model selection criteria and make use of more general information about the distribution 
of carcasses. Most notably, the number of carcasses generated by a turbine will always be finite, and models that predict infinite 
carcasses outside the search radius should be eliminated from consideration. We refer to models that can be extended beyond 
the search radius to infinity and still predict finite numbers of carcasses as “extensible.” Among the original 17 models, 11 are 
extensible for the example data. Although many of the remaining, non-extensible models (xep0 (Pareto), xepi0 (inverse gamma), 
xep12, exponential, inverse Gaussian, constant) perform well according to AICc (table 1) and provide good fits to the data, they 
are not suitable for extrapolation outside the search radius and should not be used in estimating the fraction of carcasses inside 
the searched area.

The example illustrates some of the power and utility of the diagnostics. However, it remains a single example, and results 
specific to this particular dataset may not be generalizable. For example, the lognormal model fits relatively well within the 
range of this data but was implausible for extrapolation because it estimated that 97 percent of the carcasses lay beyond the 80 m 
search radius. For this dataset, lognormal is implausible, but for other datasets it may be the best choice.

Uncertainties and Confidence Intervals

In estimating the total mortality (M), it is necessary to account for carcasses that lie outside the searched area. If the 
probability that a carcass lies inside the searched area is ѱ, then a reasonable point estimate for M would be ​​ ̂  M ​  = ​ m​ in​​ / ψ​, where 
min is the number of carcasses lying inside the searched area. However, even if we know precisely the probability that a carcass 
will lie inside the searched area and we know the number of carcasses that did lie inside the searched area, there will still be 
uncertainty about the total number of carcasses.

The problem is akin to coin tossing, where we know the probability of heads is ѱ = 0.5. If someone tosses a coin some 
unknown number of times (M), tells us that there were min = 5 heads, and asks us to guess the total number of tosses, a good 
guess would be ​​ ̂  M ​  =  5 / 0.5  =  10​, which is the guess with the maximum likelihood. It is possible that the number of tosses 

9As with all modelFilter parameters, user has the option of overriding the default values.
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was 10, but it could easily have been 11 or 15 or 8 instead, but probably not as few as 5 or 6 or as many as 100 or even 25. That 
binomial uncertainty must be properly accounted for if we are to create accurate confidence intervals of either the fraction of 
carcasses lying inside the searched area or the total mortality.

The probability that a carcass will lie inside the searched area, ѱ, is like the theoretical probability of H in a coin toss, 
whereas dwp is like the fraction of Hs in M actual coin tosses. The probability that a carcass will lie inside the searched area 
(ѱ) is unknown. The dwp package estimates ѱ by integrating (estpsi) a fitted carcass probability distribution (ddFit and 
modelFilter) over the searched area (prepRing and addCarcass). Once ѱ is estimated, estdwp accounts for the 
uncertainty about actual fraction of carcasses lying in each turbine’s searched area, given the number of carcasses observed at 
each turbine ​​(​X​ i​​)​​ and the estimated probability that a carcass lies inside the searched area (​​​   ψ ​​ i​​​).

The dwp is estimated in a way that is fully compatible with the GenEst mortality estimator. The distinction between 
dwp and ѱ and their roles in estimation are discussed in more detail in appendixes 4 and 5. With the eoa estimator, a single 
number is entered as an aggregate dwp for the site as a whole. Typically, for eoa, a user would take the average “total” dwp, or 
mean(dwp[, "total"]), where dwp is the dwp array estimated from the estdwp function.

The dwp Package
Doing basic analyses with the dwp package does not require extensive prior experience with R, but basic familiarity 

with the workflow of entering/loading data, entering commands, and using R’s “help” features at a basic level is assumed. 
This tutorial covers a number of examples and briefly discusses some of the main functions used in the data management 
and analysis. Additional information on formatting, usage, and additional options is available for any function by entering 
the function name (case sensitive) preceded by a question mark. A list of all functions, grouped by utility and linked to 
function-specific help files, can be seen by entering ?dwp in the R command line. A complete reference manual with functions 
arranged alphabetically is available at https://cran.r-​project.org/​web/​packages/​dwp/​index.html.

The general workflow involves several steps, and dwp provides easy-to-use functions to help accomplish each step:
1.	 Importing site layout data and formatting for analysis (initLayout),

2.	Adding carcass data to the site layout (readCarcass and addCarcass),

3.	Fitting carcass distance models (ddFit),

4.	Selecting a carcass distance model to use in estimating dwp (modelFilter),

5.	Estimating probability of carcass lying inside searched area (estpsi),

6.	Estimating fraction of carcasses lying inside searched areas (estdwp), and

7.	Exporting to GenEst (exportGenEst).
All data types require a quantitative description of the searched area. The description may be as simple as the search 

radius (with the assumption that all ground inside that search radius is searched and no ground outside that search radius is 
searched) or as complex as a detailed GIS-generated map. Altogether there are five options for site layout data format, including 
search radius, simple geometries, R polygons, GIS shapefiles, and rasters (that is, search plots laid out on an xy-grid). The data 
processing in the first two steps varies, depending on the data type. However, for many data types the calculations are all done 
automatically in the background by dwp functions, and the user interface for each data type is similar.

Site Layout—Raw Data

The dwp package can accommodate several different data formats for characterizing site layout, including GIS shapefiles, 
R polygons, simple geometric descriptions (square, circular, or road and pad searches with user-specified dimensions for each 
turbine), a list of carcass distances with a search radius, or coordinates on an xy-grid.

1.	Simple search radius can accommodate a simple vector of distances from turbine to carcass. It assumes circular search 
plots with the same radius at each turbine with no unsearched area within the plots and the same detection probability in 
each plot; that is, the same searcher efficiency, carcass persistence and search interval.

https://cran.r-project.org/web/packages/dwp/index.html
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2.	Simple geometry can accommodate simple variation in search geometries as circular, square, or road and pad with 
specific parameters (shape, search radius, size of turbine pad, width of roads, number of roads) for each turbine 
individually. This option does not allow for multiple search classes.A search class is an area where the carcass detection 
probability is expected to be the same in all parts.

3.	R polygons can accommodate moderately complex search geometries that do not involve multiple search classes with 
different detection probabilities. A search class is an area where the carcass detection probability is expected to be the 
same in all parts.

4.	GIS shapefiles can accommodate highly complex search geometries, multiple carcass classes (for example, large, 
medium, small, bats) and multiple search classes with different detection probabilities corresponding to different ground 
types, search schedules (for example, 1-day and 14-day), or other variables that affect detection probability. A search class 
is an area where the carcass detection probability is expected to be the same in all parts.

5.	xy-grid can accommodate highly complex search geometries and multiple covariates and is suitable for more 
sophisticated custom analyses, such as accounting for anisotropy or interacting covariates. Although it opens the door to 
more sophisticated analyses, gridded data are substantially more computationally demanding than other data formats, and 
the models run much more slowly. Additionally, the dwp package does not provide automated tools for doing complex, 
custom analyses.

More complete definitions of each data type are given in worked examples in section, “Examples.”

Site Layout—Formatted Data

To estimate relative carcass density as a function of distance from a turbine, the package requires a description of the layout 
of the areas searched at a site and a list of locations where carcasses were discovered. The standard analysis divides the area 
around each turbine into 1-m rings and tallies the number of carcasses and the total area searched in each ring. The xy-grid data 
are processed and modeled on a grid rather than rings. The grid approach is ultimately more flexible and powerful than the rings 
but substantially more computationally intensive and slightly less accurate.

Ring Structure
With the exception of the xy-grid data, all the data types are converted to a common ring structure for analysis. A rings data 

structure is a list with six elements:
1.	$rdat list of data frames—one for each turbine and one for the site as a whole—with 3 or 4 columns. rdat is used in 

fitting the distance models.

•	 r = outer radius of 1-m ring.

•	 Class = search class (may be NULL or a name other than Class).

•	 exposure = area (m2) in the ring representing the given search class.

•	 ncarc = number of carcasses in the given ring and search class.

2.	$rpA list of data frames—one for each turbine and one for the site as a whole—giving the proportion of the area searched 
in each ring. rpA is used in calculating estimated dwp.

•	 r = outer radius of 1-m ring.

•	 pinc = proportion of area searched in the ring.

3.	$srad = maximum search radius at any of the turbines searched.

4.	$ncarc = vector of carcass counts at each turbine.

5.	$scVar = name of the search class variable (or NULL).

6.	$tcenter = array of turbine locations with columns x and y and row names are turbine IDs.
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The analysis of rings data begins with the fitting of distance models. By default, the ddFit function fits 12 different 
generalized linear models (GLMs) to the data. Specifically, the models are Poisson regressions of carcass counts in 1-m rings, 
using the searched area (or the searched area in a given carcass class) as the exposure and the natural logarithm of the exposure 
as an offset. The fitted GLMs are then converted to parametric distributions. The models are discussed in greater detail in 
appendix 1.

The data structure for layouts defined on coordinate grids rather than shapes are somewhat different, but the analyses 
are similar.

Coordinate Grid (x,y)
A layout of the site on a grid of (x,y) coordinates marking the centers of 1 m2 or 2 m ×2 m quadrats are the most flexible 

for modeling, but they are difficult to work with because of the computer memory requirements and slow processing speeds. A 
properly formatted, small (x,y) gridded layout dataset (layout_xy) is available in dwp. It is a standard data frame with x and 
y coordinates on 1- or 2-meter grids overlaying each turbine (unitCol) at the site. The coordinates may either be relative to the 
turbine location (that is, each turbine is assumed to be located at (0, 0) according to the grid coordinates listed for the turbine), or 
the coordinates are UTMs with the turbine locations given in a separate file (file_turbine). The number of carcasses found 
in each grid cell also must be provided (ncarcCol).

The importing and formatting is accomplished via initLayout, and there is no need for further processing before 
proceeding to the analysis, as discussed in section, “The (x, y) Grid Data.”

Examples
The remainder of the body of this guide (prior to the appendixes) is devoted to examples of increasingly complicated and 

detailed data analyses based on a variety of data formats seen in fatality monitoring programs.

Example 1—A Terse Analysis

The first example is a highly streamlined introduction to the main dwp functions and main tasks of a basic analysis. It 
serves strictly as an outline. More detailed and annotated analyses that address some of the difficulties that arise in a more 
thorough analysis are presented in sections, “Examples 2–6.”

Import and Process the Data
In this example, the site layout and carcass location data are imported from shapefiles. Detection probability varies 

with search class on the ground, as specified in the Class column in the shapefile. It is not necessary to know or estimate 
the detection probabilities in each search class. Rather, Class can be specified as a covariate in the model, and the relative 
detection probabilities will be implicitly accounted for in the model.

The first steps are to import the data from shapefiles (initLayout), format the data into rings (prepRing), and tally the 
carcasses discovered in each ring (addCarcass).

# import site map
layout_shape <- initLayout(data_layout = "searchpoly.shp",

   file_turbine = "turbine_pt.shp", unitCol = "Turbine")

# format the site map for analysis
rings_shape <- prepRing(layout_shape, scVar = "Class", notSearched = "Out")

# import carcass locations
cod <- readCarcass("carcasses.shp", unitCol = "Turbine")

# add carcasses to the site layout
rings_shape <- addCarcass(cod, data_ring = rings_shape, plotLayout = layout_shape)
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Fit Models and Select One
Once the site layout and carcass location data have been imported and formatted, use ddFit to fit a wide array of possible 

carcass distribution models to the data and use modelFilter as an aid in selecting an appropriate model for estimating dwp. 
Detailed help on any of the functions can be found by entering, for example, ?ddFit or ?modelFilter in R.

dmod_shape <- ddFit(rings_shape, scVar = "Class") # scVar is an optional covariate
models <- modelFilter(dmod_shape, quiet = TRUE)
best_mod <- models$filtered

Estimate Probability that a Carcass Lies Inside Searched Area
Now that a model has been selected, use estpsi to estimate ѱ, the probability that a carcass lies inside the searched area. 

The Greek letter ѱ is “psi” in English and short for “probability that search area includes carcass.” estpsi estimates ѱ at every 
turbine and accounts for the uncertainty in estimating the model parameters.

psihat <- estpsi(rings_shape, model = best_mod)

Estimate dwp and Export to File for Reading into GenEst
The “density-weighted proportion” (dwp) is the fraction of carcasses falling inside the searched area. The expected dwp is 

ѱ, but the uncertainty in estimating dwp is greater than the uncertainty in ѱ due to variation in the actual fraction of carcasses 
falling in the searched area given the probability of a carcass falling in the searched area. The problem is similar to flipping a 
coin 10 times. We know the probability of heads is 0.5, but the actual number of heads in 10 flips varies. estdwp accounts for 
that uncertainty.

When the dwp is estimated, it can be formatted10, where nturb is the number of turbines and nsim is the number of 
simulation reps and used as a component in GenEst for estimating mortality.

dwphat <- estdwp(psihat, ncarc = getncarc(rings_shape))
exportGenEst(dwphat, file = "dwp.csv")

A series of more detailed examples that demonstrate how to run analyses on different data types and to highlight some of 
the difficulties that may be encountered in a dwp analysis are given in sections, “Examples 2–6.”

Example 2—Vector of Distances

The simplest scenario is a vector of carcass distances coupled with a search radius. This framework assumes that all ground 
inside the search radius is searched at every turbine, the detection probability is the same around each turbine, and nothing else 
is searched. All that is required in this simplest scenario is a vector of distances and a known search radius.

Importing and Formatting Distance Vector Data
Bundled with the dwp package is an example dataset compiled from eagle carcass searches over several years at a large 

site. The searches were conducted with dogs out to a radius of approximately 100 m. We defined the search radius to be 100 
m and assumed the plots were circular. The example dataset is formatted as a data frame, layout_eagle, which consists 
of three columns: DateFound, turbine, and r (which gives the distance from the carcass to the nearest turbine). The data 
frame structure is optional.

10For dwp, GenEst requires a .csv file with a column for turbine name and a column for dwp estimates for each turbine. The dwp estimates for each turbine 
may be either (1) point estimates (single number), or (2) simulated values that account for the uncertainty in the estimates. In the latter case, the turbine and dwp 
columns will be of length nturb×nsim.
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# the first few lines of the eagle data set 
head(layout_eagle) 
#> DateFound turbine r 
#> 1 03-Aug-05 t21 23 
#> 2 10-Oct-05 t43 46 
#> 3 31-Oct-05 t14 25 
#> 4 09-Apr-06 t25 30 
#> 5 28-Apr-06 t16 65 
#> 6 03-May-06 t21 42 

•	 Required:

1.	Vector of distances, and

2.	Search radius.

•	 Assumptions:

1.	Circular search plots,

2.	No unsearched area inside search radius,

3.	Same search radius at all turbines, and

4.	 Isotropic carcass distribution (same in all directions from the turbine).
After the raw data have been defined in a vector or a column in a data frame or array, they need to be formatted as a rings 

object (section, “Ring Structure”).

# format by feeding the bare vector of distances to prepRing (with search radius)
rings_eagle <- prepRing(layout_eagle$r, srad = 100)

Fitting Carcass Distance Models
After the data have been formatted as a rings object, use ddFit to fit parametric distributions to the data.

eaglemod <- ddFit(rings_eagle)
#> Extensible models:
#> xep1
#> xep01
#> xep2
#> xep02
#> xep12
#> xep0123
#> tnormal
#> MaxwellBoltzmann
#> lognormal
#>
#> Non-extensible models:
#> xep012
#> xep123
#> constant 

Of the 12 standard models that are fit by default (app. 1), all but 3 are extensible for this dataset. With the exception of 
xep1 and the lognormal, all the extensible models are in close agreement with each other and fall within a tight band (fig. 6). 
Because the search coverage within 100 m of a turbine is 100 percent and there is no unsearched area inside the search radius, 
the estimated dwp is the estimated fraction of carcasses falling within 100 m, which is the y-value of the cumulative distribution 
functions (CDFs) at x = 100 (fig. 6). Thus, it can be seen that all models except for xep1 predict that more than 95 percent of 
the carcasses lie within 100 m, and thus there is little distinction among the models.
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Figure 6.  Cumulative distribution functions for eagle carcass distributions. Figure drawn using the 
plot function from the dwp package with the fitted eagle models—plot(eaglemod).

Model Selection
There appears to be little distinction among the fitted models for the eagle data beyond xep1 and lognormal predicting 

somewhat lower ѱ than the other distributions (fig. 6). The question is whether it is the xep1, lognormal, or one of the other 
seven models that is giving the most accurate prediction of ѱ and dwp.

A primary aid in model selection is the function modelFilter, which gives a table of filtering test results, which are 
discussed in section, “Tools for Model Selection” and illustrated in section, “Examples.” The filter gives a 0 (fail) or 1 (pass) for 
each test for each model, along with ΔAICc.
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modelFilter(eaglemod)

#> extensible rtail ltail aicc hin deltaAICc
#> 1 1 1 1 1 0.000000
#> 1 1 1 1 1 1.118513
#> 1 1 1 1 1 2.286072 
#> 1 1 1 1 1 2.638046
#> 1 1 1 1 1 3.208478
#> 1 1 1 1 1 4.109567
#> 1 1 1 1 1 4.183636
#> 1 1 1 1 1 8.123697
#> 1 1 1 1 1 8.681678
#> 1 1 1 1 1 2.863524
#> 1 1 1 1 1 4.859597
#> 

lognormal 
xep01 
MaxwellBoltzman
n xep2 
xep02 
xep0123 
xep12 
tnormal 
xep1 
xep012 
xep123 
constant 0 0 1 0 1 66.68849

All extensible models passed all the filtering tests (value = 1). The lognormal had the lowest AICc, but all the 
extensible models had ΔAICc < 10. When there is little to no unsearched area inside the search radius as with the eagle data, 
AICc is of little to no value for distinguishing among models with ΔAICc < 10 because the dwp prediction does not involve 
any interpolation but is strictly a matter of extrapolation to the area outside the search radius. In general, the heavy-tailed 
lognormal and xep1 distributions tend to be less well-suited to eagle carcass distributions and should be used with caution 
(app. 3). The other fitted distributions are remarkably similar for the eagle data, with all predicting at least 98.3 percent of the 
carcasses inside the search radius, which is given as p_win in the summary stats table for the fitted models:

stats (eaglemod) 
#>  median 75% 90% 95% mode P_win deltaAICc 
#> lognormal 39.3 57.0 79.7 97.4 29.0 0.954 0.00 
#> xep01 39.6 54.9 71.7 83.1 32.5 0.983 1.12 
#> MaxwellBoltzmann 41.4 54.5 67.3 75.2 38.1 0.997 2.29 
#> xep2 39.6 56.0 72.2 82.4 33.71 0.987 2.64 
#> xep02 40.6 55.1 69.3 78.1 36.3 0.994 3.21 
#> xep0123 38.3 54.4 71.6 80.3 26.7 0.995 4.11 
#> xep12 40.4 55.5 69.9 78.8 36.5 0.993 4.19 
#> tnormal 41.4 55.6 68.6 76.3 40.5 0.997 8.13 
#> xep1 41.8 67.1 97.0 118.3 24.9 0.908 8.68 

Thus, regardless of which model we choose (excluding xep1 and lognormal), ​​ ̂  dwp ​ ​will be practically the same, so we 
will select xep01 (gamma) because, among the non-heavy-tailed distributions, it is the top model in terms of AICc. The fitted 
parameters of this model are in the parms element of the corresponding model object. Obtaining confidence intervals for 
parameters is demonstrated in section, “Model Fitting and Analysis.”
eaglemod$xep01$parms

shape rate
4.06980861 0.09448663

#>
#>

Probability of a Carcass Lying Inside the Searched Area and Density-Weighted Proportion
The probability that a carcass will lie inside the searched area can be estimated using estpsi, which returns a vector of 

simulated ​​ ̂  ψ ​​ values that account for the uncertainty in estimation of ѱ, and a confidence interval can be calculated using the R 
base function, quantile.

psihat <- estpsi(rings_eagle, model = eaglemod[["xep01"]]) 
# 90% confidence interval: 
quantile(psihat, prob = c(0.05, 0.95)) 
#> 5% 95% 
#> 0.943892 0.994859 

Then, ​​ ̂  dwp ​​ is calculated from the estimated psihat and the number of carcasses using estdwp. A confidence interval can 
once again be calculated using quantile.
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dwphat <- estdwp(psihat, ncarc = getncarc(rings_eagle))
# 90% confidence interval:
quantile(dwphat, prob = c(0.05, 0.95))
                5% 95%

0.923 1.000
#>
#>

As expected (app. 4), the confidence interval for dwp is wider than the confidence interval for ѱ. The ​​ ̂  dwp ​ ​ can now be 
formatted for GenEst and exported.

eagle_frm <- formatGenEst(dwphat)
exportGenEst(eagle_frm, file = "dwp_eagles.csv")

Example 3—Simple Geometry
If the search areas are fairly regular and are amenable to simple description as square, circular, or road and pad with a few 

defining parameters, the data can be imported and processed for analysis using initLayout, prepRing, and addCarcass. 
Unlike the vector of distances format, the simple geometry format can accommodate differences in search areas among turbines. 
However, it does not allow complex shapes or multiple search classes. A raw simple geometry dataset is simply a standard data 
frame with 3–6 columns, including the following:

•	 turbine: turbine IDs formatted as syntactically valid R names, which include only letters, numbers, underscores (_), and 
(or) periods (.) and do not begin with a number.

•	 radius: the search radius. If the search plot is an m × m square, the radius is its half-width, m. If the search plot is roads 
and pad, the radius is the maximum search distance from the turbine.

•	 shape: general descriptor of the shape of the search plot and must be one of "square", "circular", or "RP" (for 
road and pad searches).

•	 padrad: radius of the turbine pad, which is assumed to be circular; required when shape = "RP", otherwise optional 
(and ignored).

•	 roadwidth: width of the access road(s); required when shape = "RP", otherwise optional (and ignored).

•	 n_road: number of access roads; required when shape = "RP", otherwise optional (and ignored).

Importing and Formatting Site Layouts with Simple Geometry
Simple layouts can be read from .csv files using initLayout or can be entered by hand and then preformatted using 

initLayout. There is an example of a simple geometry site description (layout_simple) bundled into the package. The 
dataset has search plots with different shapes at each of four turbines (fig. 7).

data(layout_simple) 
layout_simple 
#>  turbine radius shape padrad roadwidth n_road 
#> t1 t1 90 circular NA NA NA 
#> t2 t2 65 square NA NA NA 
#> t3 t3 120 RP 15 5 2 
#> t4 t4 100 RP 20 4 1 

The layout_simple raw dataset is formatted as a data frame and needs to be preformatted using initLayout to 
convert it into a simpleLayout object which can be recognized by other dwp functions.

# initial format:
class(layout_simple)
#> [1] "data.frame"

# convert to simpleLayout:
layout_simple <- initLayout(layout_simple)
class(layout_simple) 
#> [1] "simpleLayout" "data.frame"
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Figure 7.  Site layout with simple geometry. Axes indicate coordinate grids in meters relative to turbine at (0, 0).
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Once the site layout data have been preformatted using initLayout, use the prepRing function to process the layout 
data into 1 m concentric rings with the area (in square meters) searched in each ring at each turbine.

rings_simple <- prepRing(layout_simple)

After formatting the site layout data into rings, use addCarcass to incorporate carcass data into the rings data structure 
for analysis. The carcass data for simple geometry layouts should be organized in a data frame with each row representing a 
carcass and columns for the turbine ID and the distances from the turbine at which the carcasses were found.

# carcass data
head(carcass_simple)
#> turbine r
#> 1 t2 47.99
#> 2 t2 75.07
#> 3 t1 19.97
#> 4 t1 51.84
#> 5 t4 8.06
#> 6 t2 8.83

# adding carcasses to the formatted (but bare) site layout data
rings_simple <- addCarcass(carcass_simple, data_ring = rings_simple)

After adding carcasses to the site layout formatted as a rings object using prepRing and add_carcass, the carcass 
distribution models can be fit using ddFit.

dmod_simple <- ddFit(rings_simple) 
#> Extensible models: 
#>  xep1 
#>  xep01 
#>  xep2 
#>  xep02 
#>  xep123 
#>  tnormal 
#>  MaxwellBoltzmann 
#>  lognormal 
#> 
#> Non-extensible models: 
#>  xep12 
#>  xep012 
#>  xep0123 
#>  constant 

The lognormal distribution predicts only 30.6 percent of the carcasses to lie within the maximum search radius among the 
turbines (120 m), and the gamma predicts 82.8 percent. All other extensible models predict in excess of 95 percent (fig. 8) within 
120 m. If there were very little unsearched area within 120 m, then the six extensible models other than lognormal and gamma 
would give the same >95 percent for​ ​ ̂  dwp ​​, and there would be no practical difference among them. However, there is a great deal 
of unsearched area within the maximum search radius at the site. The models are quite different from one another between about 
40 and 100 m from the turbine, and the choice of model is likely to have a significant impact on the resulting dwp prediction.

Model Selection for the Simple Geometry Site
The first step in model selection is to use the modelFilter function.

modelFilter(dmod_simple)$scores

The fitted lognormal and gamma (xep01) distributions evidently have implausibly heavy right tails, as they both fail 
the rtail model filter test (table 2). There is at least one high-influence point for the xep02 and xep1 models, thus failing 
the hin test (table 2). Only three models—the truncated normal (tnormal), xep123, and Rayleigh (xep2)—pass all the 
diagnostic tests. The truncated normal and xep123 CDFs are virtually indistinguishable, whereas the Rayleigh differs markedly 
(fig. 8). Because there is a great deal of unsearched area at the site, prediction of ѱ and dwp relies strongly on interpolation, 
so a good fit within the range of the data is crucial, and models with large AICc scores—like the Rayleigh (xep2)—can be 
eliminated. The truncated normal has the lowest AICc score among the models that pass all the diagnostic tests, and that is the 
one we select for calculating​ ​ ̂  dwp ​​ for these example data.
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Figure 8.  Fitted cumulative distributions of carcasses at the simple geometry site. Only the 
extensible models are shown. Figure drawn using the plot function from the dwp package with the 
fitted models: plot(dmod_simple).

Table 2.  Model filter for simple geometry site.

[Table shows model filter results where 1 = filter test passed and 0 = filter test failed. Tests are described in section, 
“Tools for Model Selection.” Extensible: Extensibility test. rtail and ltail = heavy r(ight) and l(eft) tail tests. aicc: 
​ΔAICc​ less than 10. hin: High influence test. ΔAICc: Difference between AICc value for a given model and the lowest 
AICc value among the models tested. (AICc is the Akaike information criterion corrected for finite sample size.)]

Model Extensible rtail ltail aicc hin ΔAICc

truncated normal 1 1 1 1 1 1.18
xep123 1 1 1 1 1 2.78
xep2 1 1 1 1 1 8.11
xep02 1 1 1 1 0 0.37
xep1 1 1 1 1 0 0.75
Maxwell-Boltzmann 1 1 1 0 1 38.47
lognormal 1 0 1 1 1 0.00
xep01 1 0 1 1 0 0.10
xep12 0 0 1 1 1 1.05
xep012 0 0 1 1 0 2.22
xep0123 0 0 1 1 0 4.40
constant 0 0 1 0 1 43.52
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Estimated Probability of a Carcass Lying Inside the Searched Area and Estimated Fraction of 
Carcasses Lying Inside the Searched Area for the Simple Geometry Site

Having selected the truncated normal distribution (tnormal) for each turbine, we can predict the probability that a carcass 
lies inside the searched area using estpsi. Because estpsi integrates the selected model over the searched area (as with the 
“volcano” in fig. 2), both the searched area (formatted as rings_simple) and the selected model are required as arguments 
to estpsi.

psihat_simple <- estpsi(rings_simple, model = mod_simple["tnormal"])

The prediction of dwp depends not just on the probability of a carcass lying inside the searched area (ѱ) but also on the 
number of carcasses discovered inside the searched area, so the estdwp function requires both ​​ ̂  ψ ​​ and the carcass counts.

dwphat_simple <- estdwp(psihat_simple, ncarc = getncarc(rings_simple))

The estimated dwp’s for each turbine can now be plotted (fig. 9) and exported to a .csv file for use in GenEst.

plot(dwphat_simple) 
exportGenEst(dwphat_simple, file = "dwphat_simple.csv")

Example 4—R Polygons

R Polygon Site Layouts—Data
If the shape of the search plots is somewhat complex, but there is only one search class, you may import your site layout 

data in R polygon format. An R polygon is simply two columns of data giving the x and y coordinates of the vertices of a 
polygon. For dwp analysis, the polygons must be associated with turbines in a standard data frame with three columns:

•	 turbine: a turbine ID, which must be a syntactically valid name in R and include letters, numbers, dots (.), and 
underscores (_) only. Spaces, hyphens, commas, pound signs, and other special characters are not allowed. Syntactically 
valid names must not begin with a number or with a dot followed by a number.

•	 x: x coordinates of the vertices of the polygons delineating search areas at each turbine. All coordinates are assumed to 
be in meters with the turbine referenced in the ‘turbine’ column assumed to be at (0, 0).

•	 y: y coordinates of the vertices of the polygons.
There must be one polygon for each turbine searched, and polygons must not be self-intersecting. A polygon site layout 

dataset with R polygons is included as part of the dwp package and can readily be loaded and viewed:

data(layout_polygon) 
layout_polygon
#> turbine x y
#> 1 t1 4.814164 69.209213
#> 2 t1 -12.278842 17.930197
#> 3 t1 -64.255532 15.139502
#> 4 t1 -54.836937 -54.627868
#> 5 t1 22.953680 -27.767431
#> 6 t1 70.395491 14.092991
#> 7 t1 20.162985 19.674381
#> 8 t2 -19.604416 -3.000014
#> 9 t2 -6.348615 -17.302325
#> 10 t2 14.581596 -2.302341
#> 11 t2 6.907185 10.255786
#> 12 t2 2.372306 25.953444
#> 13 t2 -1.116063 52.465045
#> 14 t2 -5.302105 58.744108
#> 15 t2 -17.860231 68.511540
#> 16 t2 -23.441621 81.767340
#> 17 t2 -35.650911 76.185950
#> 18 t2 -25.883479 33.627855
#> 19 t2 -35.999748 9.906949
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Figure 9.  Estimated proportion of carcasses lying inside the searched area for all turbines and 
the site as a whole for the simple geometry site. Figure drawn using the plot function from the 
dwp package with the estimated dwp values: plot(dwphat_simple).

To begin the analysis, the polygons must be converted to a polygonLayout object which has been error-checked 
and converted to a properly formatted list. This can be done using the initLayout function with argument 
dataType = "polygon". Once the polygon layout has been formatted, it can be plotted (fig. 10) and prepared for GLM 
analysis by tallying the searched area in concentric 1m rings around each turbine using the function prepRing.

# initial formatting 
playout <- initLayout(layout_polygon, dataType = "polygon") 
 
# plot 
plot(playout, las = 2) 
 
# create a ring structure 
rings_polygon <- prepRing(playout) 

A simulated carcass dataset for this polygon site (carcass_polygon) is included in the package. It is a simple, 
two-column data frame with each row representing a carcass and columns for turbine ID (turbine) and distances from the 
turbine (r, in meters) at which carcasses were discovered in the carcass surveys. The carcass data are added to the ring structure 
via addCarcass to complete the data preparations for analysis.
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# the first few lines of the carcass_polygon data 
head(carcass_polygon) 
#> turbine r 
#> 1 t1 32.5 
#> 2 t1 38.2 
#> 3 t1 45.1 
#> 4 t2 5.6 
#> 5 t1 12.4 
#> 6 t1 29.5 
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Figure 10.  Search plots for R polygon dataset. Figure drawn using the 
plot function from the dwp package with the formatted site layout data: 
plot(playout). t1 and t2, turbines 1 and 2.
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R Polygon Site Layouts—Carcass Distribution Modeling and Density-Weighted Proportion
After adding carcasses to the formatted rings _polygon, carcass distance models can be fit using ddFit and assessed 

using these functions:
•	 stats, which gives descriptive statistics for carcass distances (table 3),

•	 modelFilter, which performs diagnostic tests on the fitted models and ranks them by suitability,

•	 plot, which creates graphs for fitted PDFs or CDFs for fitted carcass distributions, and

•	 aic, which calculates AICc scores for fitted distributions.
For details on the use of these and other useful functions in the package, enter ?dwp.

Table 3.  Descriptive statistics for fitted carcass distributions at the R polygon site.

[Statistics are for the estimated quantiles of carcass distances. For example, Median gives the estimated distance within which 50% of the carcasses are expected 
to lie, according to the model; and 75%, 90%, 95% give the estimated distance within which 75%, 90%, and 95% of the carcasses are expected to lie, respec-
tively. Mode gives the estimated distance from the turbine at which the most carcasses are likely to lie, and p_win gives the estimated probability that a carcass 
will lie inside the search radius. ΔAICc: Difference between AICc value for a given model and the lowest AICc value among the models tested. (AICc is the 
Akaike information criterion corrected for finite sample size.) %, percent]

Model Median 75% 90% 95% Mode p_win ΔAICc

xep02 38.5 59.7 81.1 94.7 26.1 0.919 0.00
xep01 53.6 93.3 142.1 177.7 22.4 0.712 0.31
tnormal 35.3 51.8 67.2 76.6 31.3 0.977 0.61
xep1 36.1 58.0 83.8 102.2 21.5 0.906 1.26
lognormal 11,626.2 61,620.5 276,438.8 678,767.5 25.7 0.023 1.75
xep012 37.5 57.3 77.0 89.3 27.2 0.938 2.18
xep123 36.9 56.2 72.2 80.9 17.9 0.968 4.30
xep2 31.7 44.8 57.7 65.9 26.9 0.994 7.87
MaxwellBoltzmann 29.7 39.1 48.2 53.9 27.3 1.000 46.10
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# fit the distance models
dmod_polygon <-ddFit(rings_polygon)
#> Extensible models:
#> xep1
#> xep01
#> xep2
#> xep02
#> xep012
#> xep123
#> tnormal
#> MaxwellBoltzmann
#> lognormal
#>
#> Non-extensible models:
#> xep12
#> xep0123
#> constant
stats(dmod_polygon) 
#> median 75% 90% 95% mode P_win deltaAICc
#> xep02 38.5 59.7 81.1 94.7 26.1 0.919 0.00
#> xep01 53.6 93.3 142.1 177.7 22.4 0.712 0.31
#> tnormal 35.3 51.8 67.2 76.6 31.3 0.977 0.61
#> xep1 36.1 58.0 83.8 102.2 21.5 0.906 1.26
#> lognormal 11626.2 61620.5 276438.8 678767.5 25.7 0.023 1.75
#> xep012 37.5 57.3 77.0 89.3 27.2 0.938 2.18
#> xep123 36.9 56.2 72.2 80.9 17.9 0.968 4.30
#> xep2 31.7 44.8 57.7 65.9 26.9 0.994 7.87
#> MaxwellBoltzmann 29.7 39.1 48.2 53.9 27.3 1.000 46.10

The extensible models give a broad range of predictions of the probability of a carcass lying inside the search radius, from 
a low of 2.3 percent for the lognormal distribution to a high of 100 percent for the Maxwell-Boltzmann. The modelFilter 
provides useful guidance on model selection (table 4).

modelFilter(dmod_polygon)$scores

The lognormal model failed the right tail test because it predicts implausibly low probabilities of carcasses lying within 
80, 120, 150, and 200 m, whereas the Maxwell-Boltzmann model failed the left tail test because it predicts implausibly high 
probability of carcasses lying within 50 m.

Table 4.  Model filter for simple geometry site.

[Table shows model filter results where 1 = filter test passed and 0 = filter test failed. Tests are described in section, 
“Tools for Model Selection.” Extensible: Extensibility test. rtail and ltail = heavy r(ight) and l(eft) tail tests. aicc: 
​ΔAICc​ less than 10. hin: High influence test. ΔAICc: Difference between AICc value for a given model and the lowest 
AICc value among the models tested. (AICc is the Akaike information criterion corrected for finite sample size.)]

Model Extensible rtail ltail aicc hin ΔAICc

tnormal 1 1 1 1 1 0.61
xep1 1 1 1 1 1 1.27
xep123 1 1 1 1 1 4.31
xep2 1 1 1 1 1 7.87
xep02 1 1 1 1 0 0.00
xep012 1 1 1 1 0 2.18
Maxwell-Boltzmann 1 1 0 0 1 46.10
xep01 1 0 1 1 0 0.31
lognormal 1 0 1 1 0 1.76
xep12 0 0 1 1 1 2.45
xep0123 0 0 1 1 0 4.01
constant 0 0 1 0 1 42.47
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pdd(c(80, 120, 150, 200), model = dmod_polygon["lognormal"]) 
#> [1] 0.02202108 0.03217810 0.03924999 0.05018037 
pdd(c(20, 50), model = dmod_polygon["MaxwellBoltzmann"]) 
#> [1] 0.2167363 0.9184358 

The xep02 and xep012 models fail the hin test (table 4) because they have high influence points, that is, points that are 
out of line with the others according to the model but that have a significant impact on the shape of the fitted curve. This is a red 
flag that signals an instability in the model for the given data.

The remaining fitted distributions (tnormal, xep1, xep123, xep2) are broadly comparable according to the diagnostic 
criteria tested. However, the distributions differ markedly between 30 m and the maximum search radius of 85 m (fig. 11), so 
other considerations come into play. In particular, there is a tendency for the light-tailed distributions to overestimate ѱ when the 
search radius is short or moderate and there is substantial unsearched area inside the search radius as with this example (app. 3), 
so the Rayleigh would not be recommended here. Also, when there is substantial unsearched area, it is important to have a low 
AICc score, so tnormal and xep1 are to be commended over xep123.
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Figure 11.  Cumulative distribution functions for the truncated normal, xep1, xep123, xep2 
(Rayleigh) models fit to the R polygon dataset. Figure drawn using the plot function from the dwp 
package with a subset of the fitted models—plot(dmod_polygon[passind]), where 
passind is a vector of names of the models to be plotted.



30    Accounting for Fraction of Carcasses Outside Searched Area in Estimating Bird and Bat Fatalities at Wind Energy Facilities

The two remaining models (tnormal and xep1) have AICc scores differing by only 0.65, well below a minimal threshold 
to be statistically meaningful. The xep1 distribution has a heavier tail (fig. 11) but the truncated normal has much more 
frequency of very small ​​ ̂  ψ ​​ values than does xep1 (fig. 12) and therefore a less stable fit.

After selecting the xep1 model, we can calculate ​​ ̂  dwp ​​ and export for use in GenEst or other programs using this parameter 
estimate.

# estimate probability of carcass lying in searched area 
psipoly <- estpsi(rings_polygon, model = dmod_polygon["xep1"]) 
dwp <- estdwp(psipoly, ncarc = getncarc(rings_polygon)) 
exportGenEst(dwp, file = "dwp_poly.csv") 
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Figure 12.  Estimated probability of a carcass lying inside the searched area, for all turbines and the polygon site as a whole for the 
truncated normal and xep1 distributions.

Example 5—The (x,y) Grid Data

The dwp package includes an example dataset with site layout from a fictitious site with one turbine and a road and pad 
search area. The site layout data are formatted as an (x, y) grid, which gives the coordinates (in meters relative to the turbine at 
(0, 0)) of each square meter of searched ground at the turbine. The data are stored in a data frame, layout_xy, with columns 
for x and y coordinates, the number of carcasses (ncarc) in the square meter cell centered at each grid node, the distance from 
the turbine (r), and the turbine name.
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# the first few lines of the xy data layout that is bundled with dwp package 
head(layout_xy)
#> x y ncarc r turbine
#> 1 0 -15 0 15.00000 t1
#> 2 -5 -14 0 14.86607 t1
#> 3 -4 -14 0 14.56022 t1
#> 4 -3 -14 0 14.31782 t1
#> 5 -2 -14 0 14.14214 t1
#> 6 -1 -14 0 14.03567 t1
xy_formatted <- initLayout(layout_xy, dataType = "xy")

Given gridded site layout data, initLayout returns an xyLayout object, which is a list with components:
1.	xydat data frame with turbine, (x, y) grid coordinates relative to turbine, number of carcasses in each grid cell (ncarc), 

distance from turbine to center of grid cell (r), and (optional) columns for covariates or other identifiers;

2.	tcenter array of turbine locations (x, y), with row names = turbine IDs;

3.	ncarc vector of carcass counts at each turbine, with element names = turbine IDs;

4.	unitCol name of the column in xydat that has turbine IDs; and

5.	tset vector of names of turbines that were searched.
The analysis of gridded data differs slightly from the ring data. The models are fit on 1 m2 cells rather than rings. Compared 

to the rings format, the grid format is more cumbersome to work with, runs more slowly, and does not offer as wide of a 
selection of pre-formatted models. The advantage of the grid structure is that allows for more sophisticated modeling options. Of 
particular interest would be accounting for anisotropy, which is variability in carcass distribution that depends on direction, as 
might happen if a prevailing wind direction strongly affects carcass dispersion patterns. These anisotropic models are discussed 
by Maurer and others (2020) and not addressed here or in the software.

The xy-grid dataset poses special problems because few carcasses (n = 15) were found at a single turbine searched on road 
and pad only (fig. 13). Although 65 percent of the carcasses fell beyond 30 meters (m), the maximum distance at which any 
carcass was found was 29.1 m. With such a low probability of carcasses lying on roads at distances beyond 30 m or so, it is 
difficult to get a representative sample with road and pad searches unless the number of carcasses is large. If the sample includes 
no carcasses well beyond the pad radius, then the fitted models will tend to overestimate dwp because they have difficulty 
“seeing” the distant carcasses. If, however, the sample does include carcasses well beyond the turbine pad, the fitted models will 
tend to underestimate dwp because they over-estimate the number of carcasses at great distances. On average, the tendencies 
to over- or under-estimate balance out, but on any particular dataset, one of the two is likely to be acting. If there are carcasses 
at great distance, then the light-tailed models are preferred because they provide some degree of insurance that the predicted 
densities decrease to zero rapidly beyond the range of the data. If there are no carcasses at great distance, then the heavy-tailed 
models are preferred in order to prevent the distribution from collapsing to zero too rapidly and not properly accounting for 
carcasses falling beyond the farthest carcass observed.

The fitted models:

dmod_xy <- ddFit(xy_formatted)
#> Extensible models:
#> xep1
#> xep01
#> xep2
#> xep02
#> xep12
#> xep012
#> xep123
#> xep0123
#> 
#> Non-extensible models: 
#> none 
plot(dmod_xy) 
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Figure 13.  Layout of xy grid turbine data with carcasses, showing the distribution of all carcasses in the simulation, both 
those that were found in the searched area and those that were not found.

With the gridded dataset, there was enormous discrepancy among the fitted models (fig. 14), but the modelFilter 
winnows out all but two of the models (table 5):

modelFilter(dmod_xy)$scores

The xep1 and xep01 distributions are the only ones that do not predict that more than 90 percent of the carcasses 
lie within 50 m of the turbine and thus pass the ltail filter (table 5). The estimated 90th percentile of carcasses distances 
according to the xep01 model is 56.6 m11, which is just beyond the cutoff of 50 m for the left-tail test and largely in line with 
the other, rejected models. By contrast, the xep1 model has a slightly better AICc, which, all else being equal, is a reasonable 
tie-breaker for model selection.

As a postscript, note that the actual distribution that the carcasses were generated from (namely, gamma(α = 1.774,  
β = 28.17), where β is the scale parameter) has known average proportion of 79.5 percent of carcasses falling inside the search 
radius of 75 m. The xep1 model estimated12 80 percent, which is extremely close to the expected fraction. None of the other 
models was even close. All were estimated in excess of 96.5 percent within 75 m.

Selecting the xep1 model for estimating ѱ and dwp, we get:

psi_xy <- estpsi(xy_formatted, model = dmod_xy["xep1"]) 
dwp_xy <- estdwp(psi_xy, ncarc = getncarc(xy_formatted), forGenEst = TRUE)

11This can be calculated as qdd(0.9, dmod_xy[“xep01”]).

12The estimated proportion falling within a given radius, x, can be calculated as pdd(x, dmod_xy[“xep1”]).
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Figure 14.  Cumulative distribution functions of fitted models for the xy grid data. Figure drawn 
using the plot function from the dwp package with the fitted models—plot(dmod_xy), where 
passind is a vector of names of the models to be plotted.

Table 5.  Model filter for site with gridded layout data.

[Table shows model filter results where 1 = filter test passed and 0 = filter test failed. Tests are described in section, 
“Tools for Model Selection.” Extensible: Extensibility test. rtail and ltail = heavy r(ight) and l(eft) tail tests. aicc: 
​ΔAICc​ less than 10. hin: High influence test. ΔAICc: Difference between AICc value for a given model and the lowest 
AICc value among the models tested. (AICc is the Akaike information criterion corrected for finite sample size.)]

Model extensible rtail ltail aicc hin ΔAICc

xep1 1 1 1 1 1 0.90
xep01 1 1 1 1 1 2.11
xep012 1 1 0 1 0 3.58
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Example 6—Site Layout and Carcass Data from ShapeFiles—The Casselman Data

Compared to the simpler data structures (vector, simple geometry, and polygons), shapefiles allow for greater power to 
account for (1) variation in detection probabilities among search classes and (2) interacting covariates that affect the distances 
that carcasses fly but do require more sophisticated mapping and data management procedures. However, unlike the xy-grid 
format, the shapefiles do not lend themselves well to accounting for anisotropy.

We use the Casselman data to illustrate some of the analyses that can be performed using the dwp package with data from 
shapefiles. The Casselman dataset was collected at the Casselman Wind Project in Pennsylvania in 2008 (Arnett and others, 
2009a, 2009b). It includes carcass counts for several bat species found at 22 turbines. Search areas and locations of carcass 
discoveries were mapped by a global positioning system and stored in Geographic Information System (GIS) shapefiles. Search 
areas were classed by the search conditions (Easy, Moderate, Difficult, Very Difficult). Unsearched areas 
also are delineated in the shapefiles and classed as Out. For this analysis, it is assumed that the distances that carcasses fly after 
being struck by a turbine blade are not affected by the search conditions on the ground (Huso and Dalthorp, 2014). However, the 
probabilities of observing carcasses that fall at a given distance will differ depending on search class, so the search class must be 
included in the models as a non-interacting covariate.

The dataset also includes interacting covariates that, unlike search class, affect the distances that carcasses fly. We consider 
two of those—turbine operations (curtailed at low wind speeds or not) and carcass size—in sections, “Additional Analysis for an 
Interacting Covariate” and “Carcass Size.”

Shapefiles—Data
The initLayout function reads GIS shapefiles using the st_read function from the sf (simple features) R package for 

importing and managing GIS data. The importing of the shapefiles and subsequent formatting of the data for dwp is done behind 
the scenes in the package and does not assume that the user has any familiarity with the sf package. However, users with a good 
working knowledge of sf may be able to use that to their advantage in managing the data and displaying results.

The importing and formatting of shapefile data involves four steps in R:
1.	initLayout reads the site layout data into a shapeLayout structure,

2.	prepRing pre-processes the site data into a rings for analysis,

3.	readCarcass imports carcass observations data from a shapefile, and

4.	addCarcass adds carcass location data to the rings object.
To read shapefiles, the initLayout function requires “simple features” files, including a polygon or multi- polygon 

shapefile that delineates the area searched at each turbine and a points file that gives the locations of the turbines on the same 
coordinate system as the polygons. The shapefiles must have their three standard component files (.shp, .shx, and .dbf) stored in 
the same folder.

The polygons and turbine point files must have a column with turbine IDs, which must be syntactically valid R names, that 
is, contain combinations of letters, numbers, dots (.), and underscores (_) only and not begin with a number or a dot followed by 
a number. Other characters are not allowed: no spaces, hyphens, parentheses, etc. are allowed in turbine IDs.

Search areas may be defined for any number of search classes that affect detection probabilities on the ground but are not 
expected to affect the distances that carcasses fly after being struck, for example, vegetation type or ground texture. Interacting 
covariates that affect the actual distances that carcasses fly—like wind speed, turbine height, carcass size—present special 
difficulties that are difficult to model using the kinds of automated procedures used in most of the convenient dwp functions and 
are not implemented in the basic package functions. Savvy R users may be able to use the dwp functions as a basis for more 
elaborate analyses, including accounting for anisotropy (or carcass dispersion patterns that vary with direction from turbines) 
(Maurer and others, 2020) or analyzing dependence of dispersion on other interacting variables.

The shapefiles for site layout should include at a minimum a turbine ID and a “geometry” that gives the coordinates of 
the vertices for polygons that delineate the search areas. Other covariates (for example, search class, species, size, turbine 
operational constraints) are optional. When a shapefile is read into R using sf::st_read (as with dwp’s initLayout), it 
should look something like the following, showing necessary geographic information in a header and a summary of the first 10 
polygons or “features”:
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Simple feature collection with 178 features and 3 fields 
geometry type: MULTIPOLYGON 
dimension: XY 
bbox: xmin: 658608.2 ymin: 4411682 xmax: 662782 ymax: 4415250 
projected CRS: NAD83 / UTM zone 17N 
First 10 features: 
OBJECTID Turbine Class geometry 
1 1 1 Out MULTIPOLYGON (((658822.4 44... 
2 2 2 Out MULTIPOLYGON (((658747.7 44... 
3 3 3 Out MULTIPOLYGON (((658717 4414... 
4 4 4 Out MULTIPOLYGON (((658789.2 44... 
5 5 5 Out MULTIPOLYGON (((658847.6 44... 
6 6 6 Out MULTIPOLYGON (((658835.4 44... 
7 7 7 Out MULTIPOLYGON (((658873 4413... 
8 8 8 Out MULTIPOLYGON (((658771.2 44... 
9 9 9 Out MULTIPOLYGON (((659276.5 44... 
10 10 10 Out MULTIPOLYGON (((659249.2 44... 

Shapefiles are read into R using the initLayout function with the names of the search files (including the file path 
if they are not stored in your working directory in R) along with the name of the column that contains turbine IDs. Other 
arguments for initLayout are for reading other file and data formats and are ignored when reading shapefiles.

Notice that the turbine IDs (1, 2, …) in the raw data file (shown above) are not syntactically valid R names. initLayout 
will convert these to simple, syntactically valid names, and alert the user that conversion has taken place. In general, users 
should use the initLayout function rather than sf::st_read directly for importing the shapefiles because initLayout 
employs some additional error-checks and formats the data for further processing and analysis:

# import site layout and carcass observation distances from shapefiles
layout_shape <- initLayout(data_layout = "searchpoly.shp",
  file_turbine = "turbine_pt.shp", unitCol = "Turbine")

cod <- readCarcass("carcasses.shp", unitCol = "Turbine")

The polygons in the searchpoly.shp shapefile are expressed as collections of (x, y) coordinates in meters relative to a 
reference point. In this example, there are a total of 178 polygons (or “features”) that delineate distinct, non-intersecting search 
areas at 23 turbines. Search classes include Easy, Moderate, Difficult, Very Difficult, and Out. Maps of the 
searched areas at three of the turbines are shown in figure 15.

After the data are imported into R, they must still be formatted for analysis:

rings_shape <- prepRing(layout_shape, scVar = "Class", notSearched = "Out")

For a large site with multiple search classes, data formatting may take several minutes. The result is an S3 object of class 
rings, which features a characterization of the searched areas at each turbine, including the total area and number of carcasses 
in each search class in each concentric, 1-m ring from the turbine to the search radius (stored in rdat, which is used in fitting 
the distance models) along with some other data. The ring structure is efficient and convenient for analysis. A full description of 
the data structure is provided in the section, “Rings Structure.”

After formatting the search plot configurations into rings for analysis, carcasses must be added to the rings. If the search 
plots are delineated into separate search classes, carcasses must be added by a two-step process of (1) importing the shape data, 
and (2) adding the data to the rings. If there are no search class distinctions, then carcasses may be added via a data frame with 
columns for turbine ID (unitCol) and for the carcass distances from turbine (r).
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Difficult Easy Moderate Out Very Difficult

Class

Figure 15.  Software-generated map showing search areas for three turbines with five search 
classes—Easy, Moderate, Difficult, Very Difficult, and Out. “Easy” is 
represented primarily by roads and turbine pads, the other classes represent progressively more 
challenging search conditions, and ”Out” areas were not searched due to rough terrain or thick 
vegetation. Figure drawn using the plot function from the dwp package with formatted site layout 
data from shapefiles.



Examples    37

# read carcass data
cod <- readCarcass(file_cod = "carcasses.shp", unitCol = "Turbine")

# add carcasses
rings_shape <- addCarcass(cod, data_ring = rings_shape, plotLayout = layout_shape)

head(cod$carcasses)
#> Simple feature collection with 6 features and 4 fields
#> Geometry type: POINT
#> Bounding box: xmin: 658875.9 ymin: 4413105 xmax: 659242.4 ymax: 4413770
#> Projected CRS: NAD83 / UTM zone 17N
#> Date_ Turbine Species Visibility geometry
#> 1 2009-08-31 t7 PESU Easy POINT (658875.9 4413770)
#> 2 2009-08-03 t9 LACI Mod POINT (659242.4 4413290)
#> 3 2009-10-07 t9 LANO Diff POINT (659228.5 4413308)
#> 4 2009-08-16 t9 PESU Mod POINT (659195.4 4413340)
#> 5 2009-08-30 t10 LABO Easy POINT (659221.9 4413108)
#> 6 2009-08-24 t10 LACI Mod POINT (659223.4 4413105)

When reading carcass observation data from a shapefile into a rings structure with search class distinctions, dwp assigns 
each carcass to the proper ring and search class. The rings data are required, but there are two ways to insert the carcass data 
into the rings. The recommended approach is to provide the plotLayout data. Then, addCarcass determines the proper 
ring and search class to assign each carcass to by calculating the distances from the carcass (x, y) coordinates in the carcass 
observation data to the turbine locations stored in the plotLayout data, which has been previously read and formatted via 
initLayout and prepRing. Search class assignment is determined by the search class in plotLayout that is associated 
with the carcass (x, y) coordinates. If a carcass location falls in an unsearched area, the addCarcass function aborts with an 
error. The calculations are all done safely “under the hood” and directly from the imported shapefile data without needing further 
user input.

An alternative approach would be leave out the plotLayout data (plotLayout = NULL) to add carcasses directly 
from the carcass observation data into the rings data. Carcasses are assigned to rings based on distances calculated from the 
carcass locations (x, y) coordinates in the carcass observation data to the turbines (x, y) coordinates in the $tcenter array 
in the data_ring. Carcasses are assigned to search classes as indicated by the scVar in the carcass observation file. This 
can introduce errors in interpretation, because the model assumes that the “search classes” apply to the characteristics of the 
general area where a carcass is found (fig. 15), but often the search classes that are tagged to individual carcasses in carcass 
observation data apply to the search conditions in the immediate vicinity of carcasses. For example, if a carcass is found in a 
small Difficult patch in a large Moderate area, and the site map (plotLayout) includes only that Moderate area but 
not the Difficult patch, the carcass should be tallied as Moderate. This potential problem in data interpretation is not an 
issue if the plotLayout is included in the addCarcass function call.

If there are no class distinctions among the search areas, carcasses may be added to rings from a data frame with columns 
for turbine ID and carcass distance. For example, the cod argument in the addCarcass function call may be a data frame 
rather than an imported carcass location shapefile:

cod <- data.frame(r = c(31.2, 63.9, 18.4, 4.7), turbine = c("t1", "t2", "t2", "t1")

Now that the site layout data have been formatted into rings and the carcass data have been inserted into the ring structure, 
the model fitting and analysis can proceed. For most of the input formats (excepting the grid data), the analyses follow the 
same path regardless of the initial data format. For the Casselman data, we do a basic analysis first but then indulge some more 
sophisticated analyses as an introduction to some of the more advanced questions that can be addressed using the software.

Model Fitting and Analysis
The basic modeling and analysis is similar, regardless of the initial data format. Several tools for fitting, interpreting, 

and evaluating models are available. However, the shapefiles allow covariates to be included in the models, enabling greater 
power to address more difficult and varied questions and to account for important factors that the other data formats cannot 
easily address.
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The analysis begins with the fitting of distance models using ddFit with ring data or grid data. The basic function call 
requires only a formatted dataset as returned by the prepRing function (or initLayout for grid data). With the shapes data 
(rings_shape, as imported and formatted earlier) in the example discussed in this section, the search plots are divided into 
areas with different detection probabilities or search classes, which are stored in the Class column in the data and should be 
included in the model as scVar = "Class".

Search class variables (like vegetative cover, for example) affect the detection probability of carcasses but are not expected 
to affect how far carcasses will lie from the turbines. There is no need to estimate the detection probabilities for the various 
search classes; the model automatically estimates relative detection probabilities among search classes and accounts for the 
differences. Although the relative detection probabilities are estimated (for example, the odds of detection in class A may be 
2.52 times as great as in class B), the absolute detection probabilities (g in GenEst and eoa) are not. A simple example of fitting 
distance models using ddFit is given below. A number of options to ddFit are available; enter ?ddFit in R for a more 
detailed information on arguments and return values.

dmod_shape <- ddFit(x = rings_shape, scVar = "Class")
#> Extensible models:
#> xep1
#> xep01
#> xep2
#> xep02
#> xep12
#> xep012
#> tnormal
#> MaxwellBoltzmann
#> lognormal
#>
#> Non-extensible models:
#> xep123
#> xep0123
#> constant

As the models are fit, their names are listed on the console as either “extensible” or “non-extensible,” depending on whether 
or not the model can be extended outside the search radius and converted to a probability distribution. Non-extensible models 
generally are not appropriate for dwp analysis but may be interesting in their own right. The plot function can be used to graph 
the fitted models (fig. 16).

plot(dmod_shape)

The default for plot is to graph the cumulative distribution function (CDF) for each extensible, fitted model, although any 
subset of models (for example, distr = c("xep01", "xep1")) also may be plotted (fig. 17). By default, the best model 
according to a default model filter (?modelFilter) is highlighted, but any model can be highlighted at the user’s discretion 
by setting the mod_highlight argument equal to the name of the model. Alternatively , the probability density functions 
(type = "PDF") rather than the CDF can be plotted, but the probability density is limited strictly to inside the search radius 
(extent = "win"). For more details on plotting options, enter ?plot in R.

plot(dmod_shape, type = "PDF")

To estimate ѱ, the probability of a carcass lying inside the searched area and dwp, the fraction of carcasses lying inside the 
searched area, a model must be selected. If it is desired to account for all carcasses lying outside the areas searched—including 
areas outside the search radius—an extensible model is required.

The graph of the CDF shows the estimated probability that a carcass lies within a given distance from the turbine. In this 
example, the two heaviest-tailed models (lognormal and xep1) predict about 20 percent of the carcasses lie outside the 
search radius of around 88 m, whereas the other extensible models predict virtually zero carcasses outside the search radius. 
In some datasets, choice of model can have a profound impact on the estimated fraction of carcasses falling inside the search 
radius, ​​ ̂  dwp ​.​ Some of the important issues involved in model selection are discussed in the appendixes. The modelFilter 
function is designed to address many of the issues.

The probability that a carcass lies inside the search radius (srad)—or any other specified distance—can be estimated for 
any of the extensible, fitted distributions using the pdd function, which is an analog to pnorm for distance distributions.
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Figure 16.  Cumulative distribution functions for extensible, standard models for the full ”shape” 
dataset in section, “Model Fitting and Analysis.” Figure drawn using the plot function from the 
dwp package with the fitted models.

pdd(rings_shape$srad, model = dmod_shape["xep01"])
#> [1] 0.9764346
pdd(rings_shape$srad, model = dmod_shape["xep02"])
#> [1] 0.997577
pdd(rings_shape$srad, model = dmod_shape["lognormal"])
#> [1] 0.8174281

The lines shown in figures 16 and 17 are for the maximum likelihood estimators of the models, which represent the most 
likely or “best” estimate for the given distribution. However, due to random variation, the distributions are estimated with 
uncertainty. That uncertainty can be accounted for by simulating from the asymptotic distribution of the parameter estimators 
using the ddSim (distance distribution simulation) function, and confidence intervals can be constructed (fig. 18).
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Figure 17.  Probability density functions within the search radius for extensible, standard models 
for the full “shape” dataset in section, ”Model Fitting and Analysis.” Figure drawn using the plot 
function from the dwp package with the fitted models.

# simulate parameters to account for uncertainty:
simparm01 <- ddSim(dmod_shape["xep01"])
simparm1 <- ddSim(dmod_shape["xep1"])
simparm02 <- ddSim(dmod_shape["xep02"])
simparmln <- ddSim(dmod_shape["lognormal"])

# calculate confidence intervals:
srad <- rings_shape$srad
(CI01 <- round(quantile(pdd(srad, simparm01), prob = c(0.05, 0.95)), 3))
#>  5%  95%
#> 0.938 0.991
(CI02 <- round(quantile(pdd(srad, simparm02), prob = c(0.05, 0.95)), 3))
#> 5% 95%
#> 0.989 0.999
(CI1 <- round(quantile(pdd(srad, simparm1), prob = c(0.05, 0.95)), 3))
#> 5% 95%
#> 0.741 0.912
(CIln <- round(quantile(pdd(srad, simparmln), prob = c(0.05, 0.95)), 3))
#> 5% 95%
#> 0.629 0.917
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Figure 18.  Estimated probability of carcass lying inside the searched area according to four distributions fit to the full “shape” 
dataset.

It is also straightforward to calculate confidence intervals for quantiles of distance distributions using the qdd function, 
which is the analog of qnorm but for distance distributions. For example, to calculate 90 percent confidence intervals for the 
90th percentile of distances at which carcasses lie, we can use the same sets of simulated parameters used in estimating the 
probabilities that carcasses lie inside the search radius, and calculate the 90th percentiles as qdd(0.9, ...):

# simulate 90th percentiles:
qxep01 <- qdd(0.9, model = simparm01)
qxep1 <- qdd(0.9, model = simparm1)
qxep02 <- qdd(0.9, model = simparm02)
qxepln <- qdd(0.9, model = simparmln)
# calculate confidence intervals:
(CI01 <- round(quantile(qxep01, prob = c(0.05, 0.95)), 1))
#> 5% 95%
#> 56.8 78.0
(CI02 <- round(quantile(qxep02, prob = c(0.05, 0.95)), 1))
#> 5% 95%
#> 51.4 63.5
(CI1 <- round(quantile(qxep1, prob = c(0.05, 0.95)), 1))
#> 5% 95%
#> 84.7 129.4
(CIln <- round(quantile(qxepln, prob = c(0.05, 0.95), na.rm = T), 1))
#> 5% 95%
#> 82.1 221.1
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Thus, according to the xep02 model, carcasses had an estimated 90-percent probability of falling within 56.1 m of 
the turbine with a 90-percent confidence interval of [51.4, 63.5] m (qdd(0.9, dmod_shape["xep02"])), whereas 
the lognormal model estimates a substantially greater distance of 118.5 m with a confidence interval of [82.1, 221.1] m 
(qdd(0.9, dmod_shape["lognormal"])). The xep01 model was similar to the xep02, and the xep1 more like the 
lognormal (fig. 19).

Probability of a Carcass Lying Inside the Searched Area
The pdd function can be used to estimate the CDF of carcass distribution as a function of distance from a turbine, which is 

related to but distinct from the probability, ѱ, that a carcass lies inside the searched area. ѱ is estimated by integrating the PDF 
of the fitted carcass distribution over the areas searched at each turbine. This can be accomplished for any fitted model and site 
layout using the estpsi function, and a summary figure can be viewed using plot (fig. 20).

psi01 <- estpsi(rings_shape, model = dmod_shape["xep01"]) 
plot(estpsi(psi01), main = "xep01")

The probabilities of lying in the searched area ranged from around 55 percent for turbines t11 and t15 to 85–90 percent 
for turbines t17–t23. The combined total was around 75 percent. More precise statistics can be extracted from the psiHat 
object returned from the estpsi function. In this case, that is psi01, which is a matrix with a column of nsim simulated 
values,​​ ̂  ψ ​​, for each turbine, with the uncertainty in the estimation of ѱ at each turbine captured by the variation in values in the 
turbine’s column.

The ​​   ψ ​​ values for xep01 and xep02 varied by a few percent (fig. 21), although the 0.005 quantiles sometimes differed 
from one another by more than 10 percent.
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Figure 19.  Estimated 90th percentile of carcass distances for four distributions fit to the full “shape” dataset.
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Figure 20.  Estimated probability of a carcass lying inside the searched area. Figure drawn 
using the plot function from the dwp package with the estimated probability of a carcass lying 
inside the searched area.

Estimated Fraction of Carcasses Lying Inside the Searched Area
The expected fraction of carcasses lying inside the searched area (that is, the mean dwp) is equal to the probability of a 

carcass lying inside the searched area (ѱ), but the uncertainty in the estimate of the actual fraction of carcasses lying inside the 
searched area (​​ ̂   dwp ​​) is greater than the uncertainty in the estimated underlying probability (​​ ̂  ψ ​​). Recall, the situation is analogous 
to a coin toss. We know the probability of a head (equivalent to ѱ) is 50 percent, and the expected fraction of times a coin 
comes up heads (equivalent to dwp) in n coin tosses is n/2. However, the actual fraction of heads in a sequence of n flips will 
usually not be exactly n/2 but a little more or a little less. That additional, binomial uncertainty, in addition to the uncertainty 
in estimating ѱ, needs to be captured in our estimate of dwp (Maurer and others, 2020). The distinction between ѱ and dwp is 
discussed further in appendix 4.

The uncertainties in estimating ѱ are captured in estpsi, and the uncertainties in estimating dwp given ѱ are captured 
using the estdwp function. The function requires the estimated ѱ and the number of carcasses observed at each turbine. The 
number of carcasses is required because the fewer the carcasses, the greater the relative uncertainty. Again, the coin toss analogy 
is illustrative. It would not be surprising to get anything from 0 to 100 percent heads in 4 coin tosses, but it would be highly 
unusual to get less than 35 percent or more than 65 percent heads in 40 coin tosses.

The fraction of carcasses lying inside the searched area at each turbine is calculated using estdwp:

dwp01 <- estdwp(psi01, ncarc = getncarc(rings_shape))

The structure of the dwp estimate is the same as that of ​​ ̂  ψ ​​, namely, a matrix with a column for each turbine, incorporating 
the uncertainties in the estimated dwp’s for each turbine and for the total at the site.



44    Accounting for Fraction of Carcasses Outside Searched Area in Estimating Bird and Bat Fatalities at Wind Energy Facilities

Turbine (t)

t1 t3 t5 t7 t9 t11 t13 t15 t17 t19 t21t2 t4 t6 t8 t10 t12 t14 t16 t18 t20 t23 Total
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Es
tim

at
ed

 p
ro

ba
bi

lit
y 

of
 a

 c
ar

ca
ss

 ly
in

g 
in

si
de

 th
e 

se
ar

ch
ed

 a
re

a 
(ψ

)

xep02
Model

xep01

EXPLANATION

Upper bound of 99-percent 
confidence interval

Interquartile
range

Upper bound of 90-percent 
confidence interval

25th percentile

50th percentile 
(median)

75th percentile

Lower bound of 90-percent 
confidence interval

Lower bound of 99-percent 
confidence interval

Figure 21.  Comparison of estimated probabilities of a carcass lying inside the searched area according to the xep01 and xep02 
models.
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Paired boxplots of ​​ ̂  ψ ​​and estimated dwp clearly reveal the greater uncertainty in estimating dwp compared to ψ​​ (fig. 22).
The estimated dwp can be formatted for use in GenEst either by setting forGenEst = TRUE in the argument list for 

estdwp, or by using the formatGenEst function on the estimated dwp.

# Option 1: format estimated dwp for GenEst in two 
steps set.seed(1942) # for repeatability 
dwp01 <- estdwp(psi01, ncarc = getncarc(rings_shape))  
dwp01 <- formatGenEst(dwp01) 
head(dwp01) 
#> Turbine dwp
#> 1 t1 0.750
#> 2 t2 0.600
#> 3 t3 0.500
#> 4 t4 0.692 
#> 5 t5 1.000
#> 6 t6 1.000

# Option 2: format estimated dwp for GenEst in one step
set.seed(1942)
dwp01 <- estdwp(psi01, ncarc = getncarc(rings_shape), forGenEst = TRUE) 
head(dwp01)
#> turbine dwp
#> 1 t1 0.750
#> 2 t2 0.600
#> 3 t3 0.500
#> 4 t4 0.692
#> 5 t5 1.000
#> 6 t6 1.000 

The formatted dwp01 can now be used as data_dwp = dwp01 in the argument list in a command line call to the estM 
function in GenEst (assuming that the other required arguments can be supplied as well) or can be exported to a .csv file for use 
in the GenEst GUI using the exportGenEst function.

exportGenEst(dwp01, file = "my_dwp.csv")

Additional Analysis for an Interacting Covariate
In the previous example, we included a covariate to account for variability in carcass detection probabilities on the ground. 

Interacting covariates—that is, variables that affect the actual distributions of carcasses rather than simply affecting detection 
probabilities on the ground—present challenges that are difficult to overcome in a generic way that would be appropriate for 
automation in dwp.

The Casselman data provide an example of an interacting covariate, which can be analyzed by fitting separate sets of 
models for different covariate levels. In particular, the site represented in the “shapes” files has turbines that were under two 
different operating protocols, freely operating or curtailed at low windspeeds. We would expect that the carcasses at the curtailed 
turbines would be distributed farther from the turbines than carcasses at the non-curtailed turbines because the curtailed turbines 
were operating only under relatively high wind speeds. We can analyze the data from the two turbine sets separately to see if 
there are differences in the distance distributions and consequent ​​ ̂  ψ ​​.

The subset function from the dwp package can be used to split the layout_shape dataset into two parts—freely 
operating turbines (layout_free) and turbines curtailed at low wind speeds (layout_curtailed).
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Figure 22.  Comparison of estimated probability of a carcass lying inside the searched area versus estimated proportion of carcasses 
lying inside the searched area for each turbine according to the xep01 model.
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The two datasets can then be analyzed separately and the results compared:

######## basic setup for freely operating turbines:
# data formatting
layout_free <- subset(layout_shape, select = "Turbine",
  subset = paste0("t", c(1, 3, 4, 8, 11, 13, 14, 16, 20, 23)))
cod_free <- subset(cod, select = "Turbine",
  subset = paste0("t", c(1, 3, 4, 8, 11, 13, 14, 16, 20, 23)))
rings_free <- prepRing(layout_free, scVar = "Class", notSearched = "Out", silent = T)
rings_free <- addCarcass(cod_free, data_ring = rings_free, plotLayout = layout_free)

# fitting the models
mod_free <- ddFit(rings_free, scVar = "Class")
#> Extensible models: 
#> xep1
#> xep01
#> xep2
#> xep02
#> xep12
#> tnormal
#> MaxwellBoltzmann
#> lognormal
#>
#> Non-extensible models:
#> xep012
#> xep123
#> xep0123
#> constant

######## basic setup for curtailed turbines:
layout_curtailed <- subset(layout_shape, select = "Turbine",
  subset = paste0("t", c(2, 5, 6, 7, 9, 10, 12, 15, 17, 18, 19, 21)))
cod_curtailed <- subset(cod, select = "Turbine",
  subset = paste0("t", c(2, 5, 6, 7, 9, 10, 12, 15, 17, 18, 19, 21)))
rings_curtailed <- prepRing(layout_curtailed, scVar = "Class", notSearched = "Out",
  silent = TRUE) # "silent" cancels updates on the status of the calculations
rings_curtailed <- addCarcass(cod_curtailed, data_ring = rings_curtailed,
  plotLayout = layout_curtailed)
mod_curtailed <- ddFit(rings_curtailed, scVar = "Class")
#> Extensible models:

#> xep1
#> xep01
#> xep2
#> xep02
#> xep12
#> 
#> 

xep012 tnormal
MaxwellBoltzmann 
lognormal

#> Non-extensible models:
#> xep123
#> xep0123
#> constant 

#> 
#> 
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The descriptive statistics for the fitted models can be summarized using the function stats, which calculates estimated 
medians, modes, and the 75th, 90th, and 95th percentiles according to models, and sorts the results by ΔAICc.

stats(mod_free)
#> median 75% 90% 95% mode P_win deltaAICc
#> xep01 30.6 44.3 59.5 70.1 23.5 0.985 0.00
#> xep2 30.6 43.3 55.9 63.7 26.0 0.996 0.64
#> xep02 30.4 41.9 53.2 60.2 26.89 0.999 1.51
#> xep12 30.5 42.3 53.6 60.7 27.0 0.998 2.35
#> lognormal 35.6 59.1 93.2 122.5 20.3 0.884 2.51
#> MaxwellBoltzmann 30.1 39.7 49.0 54.8 27.7 1.000 5.10
#> xep1 36.8 59.1 85.4 104.1 21.9 0.907 6.41
#> tnormal 30.8 50.8 50.8 56.5 30.3 1.000 9.61
stats(mod_curtailed)
#> median 75% 90% 95% mode p_win deltaAICc
#> MaxwellBoltzmann 35.0 46.1 56.9 63.6 32.2 0.998 0.00
#> xep12 35.7 47.2 58.1 64.7 33.6 0.997 1.02
#> xep02 36.0 48.6 60.9 68.6 32.3 0.993 1.06
#> xep2 38.6 54.5 70.3 80.2 32.8 0.969 1.09
#> xep01 38.8 55.9 74.9 87.9 30.1 0.946 1.95
#> tnormal 35.5 45.7 55.0 60.5 35.3 1.000 2.66
#> xep012 35.7 47.6 59.0 66.0 33.1 0.996 3.06
#> xep1 60.1 96.5 139.4 170.0 35.8 0.695 4.47
#> lognormal 64.2 116.5 199.2 274.6 29.4 0.632 4.93

In general, the carcasses at the curtailed turbines did tend to be somewhat more distant from turbines than the carcasses at 
the freely operating turbines as expected (fig. 23). The magnitude of the estimated differences strongly depended on the selected 
model (fig. 24A). The differences among the models largely vanish when the models are restricted solely to the range of the 
data and not extrapolated outside the search radius (fig. 24B). This indicates that the discrepancies among models primarily 
are due to the extrapolation outside the search radius and the models’ respective assumptions about the distribution outside the 
search radius, that is, in the tails of the distributions. The heavy-tailed distributions (lognormal and xep1), predict a relatively 
large fraction of carcasses outside the search radius, whereas the light-tailed distributions (truncated normal and Maxwell-
Boltzmann) predict relatively few carcasses outside the search radius.

Because the search radius is not long (square with half-width of 60 m and diagonal radius of 82 m), one of the 
heavier-tailed distributions with degree less than 2 is preferred (xep1, xep01, or lognormal). The light-tailed distributions 
(Maxwell-Boltzmann and the xep models with degree 2 or 3) tend to converge rapidly to zero shortly beyond the most distant 
carcass and underestimate the total outside the searched area. In both the curtailed and free datasets, the xep01 (gamma 
distribution) was the highest-ranking, relatively heavy-tailed distribution and had ΔAICc < 2. Thus, the xep01 distribution is an 
appropriate choice for both types of turbine.

The estimated probabilities of carcasses lying inside the searched areas can be calculated separately for the two sets of 
turbines (freely operating or curtailed):

# estimated spatial coverage for curtailed turbines... 
# ...using distance model fit to data from free turbines 
psi_free <- estpsi(rings_free, model = mod_free["xep01"]) 

# ...using distance models fit to data from curtailed turbines 
psi_curtailed <- estpsi(rings_curtailed, model = mod_curtailed["xep01"]) 

The estimated ѱ and dwp for the free and curtailed turbines depend on the configuration of the search plots, which vary by 
turbine, so the values are not strictly comparable. However, a few meaningful patterns can be discerned (fig. 25). First, the lower 
tails of the distributions for ​​ ̂  ψ ​​ extend much lower for the curtailed turbines than for the free turbines. This is due to the presence 
of more carcasses at greater distances at the curtailed turbines and a smaller probability that the tail of the distribution is resolved 
enough to avoid the possibility that many carcasses lie outside the search radius. Next, the uncertainty introduced in estimating 
dwp erases the clarity of the distinction between curtailed and free turbines.

After calculating the ​​ ̂  dwp ​​’s for curtailed and free turbines separately, the estimates combined into one data frame for export 
for GenEst.

ge_combined <- rbind(formatGenEst(dwp_curtailed), formatGenEst(dwp_free)) 
exportGenEst(ge_combined, file = "dwp_all.csv")
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Figure 23.  Comparison of descriptive statistics for the distance distributions for the curtailed turbines (top row of dots in each quantile) 
and the freely operating turbines (bottom row of dots in each quantile). The lines show the difference between curtailed and free 
turbines. A. Estimated quantiles of carcass distances (including extrapolations to account for carcasses outside the search radius). 
B. estimated quantiles of carcass distances solely inside the search radius.

Although we choose the gamma distribution (xep01) for estimating dwp for export to GenEst, the Rayleigh distribution 
(xep2) provides an equally high-quality fit and has the interesting and convenient property that the ratio of the quantiles of two 
Rayleighs is equal to the ratio of their parameters ​(σ1 / σ2​), regardless of the quantile. Thus, measuring by the fitted Rayleigh 
distribution, carcasses at the curtailed turbines were ​​σ​ curtailed​​ / ​σ​ free​​  =  1.258​ times more distant from the turbines than were the 
carcasses at the free turbines. That is, the median, 90th percentile, 99th percentile, and so on were all 25.8 percent greater at the 
curtailed turbines than at the free turbines.

# estimated spatial coverage for curtailed turbines... 
# ...using distance model fit to data from free turbines 
psi_free <- estpsi(rings_curtailed, model = mod_free["xep01"]) 

# ...using distance models fit to data from curtailed turbines 
psi_curtailed <- estpsi(rings_curtailed, model = mod_curtailed["xep01"]) 
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Figure 24.  Cumulative (A) xep01 and (B) xep2 distribution functions of carcass distances at curtailed and free turbines at the 
Casselman site. Curves show the maximum likelihood estimator.
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the searched area according to the xep01 distribution for curtailed and free turbines at the Casselman site.
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If not accounted for, the tendency for the carcasses to be more distant at the curtailed turbines can result in substantial bias 
when estimating total mortality. For example, using the distribution that was fit for the freely operating turbines to estimate 
mortality at the curtailed turbines, we would underestimate the mortality by some 55 percent on average at the curtailed turbines 
due to systematic bias in the estimates of ѱ (fig. 26).
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Figure 26.  Comparison of estimates of the area correction factor at curtailed turbines using the correct distance model based on data 
from curtailed turbines versus using an incorrect distance model derived from data from freely operating turbines.
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Carcass Size
Carcass size also may influence the distances that carcasses may fly, perhaps even size differences among bats can influence 

the carcass dispersion patterns around turbines. The Casselman data include a range of bat species of different sizes, which we 
can class as either large (L) or small (S). The dwp package provides tools for processing datasets with size class distinctions and 
exporting the resulting dwp estimates to GenEst.

The following sections of code show how to split a dataset on a carcass class variable, fit separate distance models for each 
size class using a single command, and create GenEst-ready dwp with carcass class distinctions.

The first task with this dataset is to add a “Size” variable to the carcass data from the freely operating turbines, with LACI, 
LASE, and EPFU classed as “L” and the other species as small.

cod_free$carcasses$Size <- ifelse( 
  cod_free$carcasses$Species %in% c("LACI", "LASE", "EPFU"), "L", "S")

It is always useful to check whether your command has the desired effect. Tabulate the carcasses by size and species to 
verify that the split was done correctly and that there are sufficient carcasses in each subset to do the estimation.

table(cod_free$carcasses[, c("Species", "Size"), drop = TRUE])
#> Size
#> Species L S
#> EPFU 3 0
#> LABO 0 15
#> LACI 35 0
#> LANO 0 28
#> LASE 2 0
#> MYLU 0 18
#> PESU 0 12 

NOTE: The drop = TRUE is necessary here because cod_free is an sf object, which is a specially formatted data 
frame with GIS information attached. When that extra information is attached, R does not recognize the sf object as a data 
frame, so functions like table will not work. The GIS information is dropped by using drop = TRUE in the subsetting. The 
result is a standard R data frame that can be manipulated like any other data frame in R.

To estimate ѱ and calculate ​​ ̂  dwp ​​ for use in GenEst when there are distinctions among carcass classes, the dwp’s must be 
estimated for each size class separately, which the dwp functions, estpsi and estdwp, can do automatically if the data are 
properly formatted. Formatting involves adding carcasses (feeding a carcass dataset into addCarcass) to the description of 
the site by rings (data_ring) with a directive to split the datasets by carcass class (ccCol).

When a ccCol (carcass class column) is included in the argument list, addCarcass creates separate ring structures for 
each carcass class, which in turn are interpreted by dwp functions to estimate ѱ and dwp, and format the results for exporting 
to GenEst.
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# split the ring data into separate structures for each size class
cod_free_size <- addCarcass(cod_free, data_ring = rings_free,
 plotLayout = layout_free, ccCol = "Size")

# fit separate distance models to the different size classes:
mod_size <- ddFit(cod_free_size, scCol = "Class")
#> Extensible models: 
#>
#> 
#> 
#> 
#> 
#>  
#> 
#> 
#> 
#> 

xep1
xep01
xep2
xep02
xep12
xep012
xep123
xep0123
tnormal
MaxwellBoltzmann 
lognormal

#>
#> Non-extensible models:
#>  constant
#> Extensible models:
#> xep1
#> xep01
#> xep2 
#> xep02
#> xep12
#> tnormal
#> MaxwellBoltzmann
#> lognormal
#>
#> Non-extensible models:
#> xep012
#> xep123
#> xep0123
#> constant

# view summary statistics for the resulting models:
stats(mod_size)
#> $L
#> median 75% 90% 95% mode p_win deltaAICc
#> xep2 28.4 40.1 51.7 59.0 24.1 0.999 0.00
#> xep1 30.8 49.4 71.4 87.1 18.4 0.951 0.22
#> xep12 28.4 41.8 55.5 64.4 21.8 0.994 1.66
#> xep01 29.0 44.4 62.1 74.6 19.7 0.976 1.72
#> xep02 28.4 41.0 53.5 61.4 23.3 0.997 1.78
#> lognormal 34.7 62.8 107.0 147.3 16.0 0.854 1.98
#> tnormal 28.7 40.4 51.2 57.7 27.1 1.000 3.26
#> xep123 28.3 40.7 51.6 57.9 23.9 1.000 3.44
#> xep012 28.4 42.2 56.7 66.2 21.1 0.992 3.69
#> xep0123 28.1 41.0 50.7 55.6 13.5 1.000 4.51
#> MaxwellBoltzmann 28.7 37.8 46.7 52.2 26.4 1.000 6.82
#>
#> $S
#> median 75% 90% 95% mode p_win deltaAICc
#> xep2 28.9 40.8 52.6 60.0 24.5 0.998 0.00
#> xep01 28.8 42.1 57.1 67.5 21.6 0.988 0.52
#> xep02 28.9 40.5 51.9 59.1 24.8 0.999 1.97

#> 

#> xep12 28.8 41.1 53.3 60.9 24.1 0.998 2.01
#> lognormal 32.1 53.2 83.9 110.1 18.3 0.910 2.04
#> xep1 32.3 51.8 74.9 91.3 19.2 0.941 2.57
#> MaxwellBoltzmann 29.1 38.3 47.3 52.9 26.8 1.000 6.15
#> tnormal 29.2 40.2 50.3 56.3 28.2 1.000 6.63



Examples    55

Selection of models to use in the calculations of ​​ ̂  dwp ​​ must be done for each size class separately. As with the earlier 
examples in the Casselman data (sections, “Modeling Fitting and Analyses” and “Additional Analyses for an Interacting 
Covariate” ), the xep01 model scores well in the modelFilter for both size classes:

# Model filter scores for small carcasses
modelFilter(mod_size[["S"]])$scores
#> extensible  rtail ltail aicc hin deltaAICc
#> xep2 1 1 1 1 0 0.0000000
#> xep01 1 1 1 1 0 0.5211667
#> xep02 1 1 1 1 0 1.9695832
#> xep12 1 1 1 1 0 2.0102368
#> lognormal 1 1 1 1 0 2.0444269
#> xep1 1 1 1 1 0 2.5680237
#> tnormal 1 1 1 1 0 6.6354677
#> MaxwellBoltzmann 1 1 0 1 0 6.1499831
#> xep123 0 0 1 1 0 0.1523155
#> xep0123 0 0 1 1 0 2.0836871
#> xep012 0 0 1 1 0 2.4650216
#> constant 0 0 1 0 0 54.2732536

# Model filter scores for large carcasses
modelFilter(mod_size[["L"]])$scores

#> extensible  rtail ltail aicc hin deltaAICc
#> xep2 1 1 1 1 0 0.0000000
#> xep1 1 1 1 1 0 0.2207812
#> xep12 1 1 1 1 0 1.6626334
#> xep01 1 1 1 1 0 1.7142410
#> xep02 1 1 1 1 0 1.7826877
#> tnormal 1 1 1 1 0 3.2572103
#> xep123 1 1 1 1 0 3.4374762
#> xep012 1 1 1 1 0 3.6869378
#> xep123 1 1 1 1 0 4.5038122
#> MaxwellBoltzmann 1 1 0 1 0 6.8218704
#> lognormal 1 0 1 1 0 1.9813879
#> constant 0 0 1 0 0 30.2262282

The same caveat about the tendency of light-tailed models to overestimate the ѱ—especially with bats—when the search 
radius is not large enough to encompass all the carcasses (and with some cushion) that is mentioned in sections, "Example 3— 
Simple Geometry,” “Example 5— The (x, y) Grid Data,” “Additional Analysis for an Interacting Covariate,” and appendix 3 
applies here, so we again select the xep01 model for both size classes.

There are two ways to call estpsi with data and models that include carcass class distinctions. They both accomplish the 
same thing, namely, to estimate ѱ for each carcass class.

1.	Pass the whole array of fitted models (mod_size, in this example) to the estpsi function along with a vector of names 
of which models to select (modnames):

psi_size <- estpsi(cod_free_size,
 model = mod_size, # list of models for each carcass class 

  modnames = c(L = "xep01", S = "xep01")) # specify 1 model for each carcass class 

2.	Pass a list of models with exactly one model selected for each carcass class:

psi_size <- estpsi(cod_free_size,
  model = list(L = mod_size[["L"]]["xep01"], S = mod_size[["S"]]["xep01"]))

Note that it is entirely possible (and easy) to select different model forms for each class. For example, there would be some 
justification for choosing xep01 for S but xep1 for L based on AICc scores. However, we opted to use the same model form 
for each size class because the xep01 model, which was selected as the “best” model for the pooled data, also worked well for 
each of the size classes individually.
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Once ѱ has been estimated, ​​ ̂  dwp ​​ can be calculated and formatted for GenEst:

data_dwp <- estdwp(psi_size, ncarc = getncarc(cod_free_size), forGenEst = T) 
dim(data_dwp) # nsim = number of simulated dwp's for each turbine and carcass class
#> [1] 10000 3
head(data_dwp) # the first few rows of the data frame
#> turbine L S
#> 1 t1 0.714 0.538
#> 2 t3 1.000 0.400
#> 3 t4 0.833 0.800
#> 4 t8 0.750 1.000
#> 5 t11 0.667 0.500
#> 6 t13 1.000 0.833

# data_dwp can be used directly from the command line as the data_dwp argument 
# in GenEst::estM, or it can be exported to a .csv file for importing into the 
# GenEst GUI: 
exportGenEst(data_dwp, file = "mydwp.csv") 
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Appendix 1.  Brief Introduction to the Carcass Distributions

Model Anatomy
Estimating the expected proportion of carcasses lying inside the searched area involves three steps (fig. 2):

1.	Modeling carcass density (carcasses per square meter) as a function of location or distance from turbine;

2.	Normalizing the fitted carcass densities to create a probability density surface; and

3.	 Integrating the probability density over the searched area.
Each model is a Poisson regression, which is a generalized linear model (GLM) with log link (McCullagh and Nelder, 

1983) such that

​​y​ i​​ ~ Poisson​(​λ​ i​​)​​

​log​(​λ​ i​​)​ ​ =  XB​

so that

	​​ λ​ i​​ ​ = ​ e​​ XB​​� (1.1)

where
	 yi	 is the carcass count within measurement unit i at an average distance of ​​x​ i​​​ m from the turbine*, and

	 λi	 is the expected number of carcasses in that unit.

In each model (dropping the index, i), XB is of the form

	​ p​(x)​ + c + log​(ε​(x, c)​)​​� (1.2)

where
	 c	 is an indicator variable for the search class,

	 p(x)	 is a polynomial with coefficients to be estimated in the regression, and

	​ log​(ε​(x, c)​)​​	 is the offset term, that is, the exposure or area (square meters) in search class c of the measurement unit.

Models of this form are distinguished by the form of the polynomial, whether, for example, it is linear, quadratic, or some 
other form. It is not necessary to know or estimate the detection probabilities in each search class. Rather, specifying c as a 
covariate in the model accounts for the relative detection probabilities among search classes. Because the search class term 
serves only to modify the intercept, we can ignore the search class term, c, in this discussion and consider the simple case where 
all the area inside the search radius is searched. Then, the exposure would be proportional to x, and the form simplifies, to

	​ λ​(x)​  ∝ ​ e​​ p​(x)​ + log​(x)​​ ​ =  x ​e​​ p​(x)​​​� (1.3)

We abbreviate such models as xep followed by digits to indicate the form of their polynomial. For example, xep12 would 
have a polynomial with linear and quadratic terms and would expand to

	​​ e​​ a +​ β​ 1​​x +​ β​ 2​​​x​​ 2​ + log​(ε​(x)​)​​​� (1.4)

We represent a log(x) term by “0,” and a 1/x term by “i.” Thus xep01 would correspond to ​p​(x)​  = ​ β​ 0​​ log​(x)​ + ​β​ 1​​ x​ and xepi0 
to ​p​(x)​  = ​ β​ i​​ 1 / x + ​β​ 0​​ log​(x)​​. In practice, the constant term, a, is a nuisance parameter that is lost when the model is normalized to 
integrate to 1.

          *The measurement unit for xy-grid data is a 1 square meter patch of ground. For the other data types, it is a 1-meter (m) annulus with inner and outer radii at 
x ± 0.5 m.
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Normally, if the leading coefficient** of p(x) is negative, the model corresponds to a probability distribution, which can be 
extended beyond the search radius, and the model can be extrapolated to estimate the fraction of carcasses falling outside the 
search radius. However, if the model also has a log(x) term, that coefficient (​​β​ 0​​​) must be greater than -2 for the model to yield a 
proper probability distribution. Similarly, a 1/x coefficient (​​β​ i​​​) must be negative. In all cases, if the leading coefficient is positive, 
the model is not extensible outside the search radius and cannot be used to estimate the fraction falling outside the search radius.

All the extensible fitted Poisson regression models can be converted into probability distributions in the exponential 
family simply by normalizing the fitted model by dividing by its integral from 0 to ∞. In this way, some of the models give 
rise to familiar distributions, like the normal, lognormal, gamma, and exponential. For example, a normalized xep01 model is 
a gamma distribution, and a normalized xep model with polynomial ​p​(x)​  = ​ β​ 0​​ log​(x)​ + ​β​ 1​​ log ​​(x)​​​ 2​​ is a lognormal distribution. 
However, although all the models do give rise to distributions in the exponential family, most do not have familiar names. In all 
cases, the ddFit function automatically normalizes the fitted distance functions whenever possible, thereby converting them to 
probability distributions. The package also includes functions for calculating the PDF, the CDF, quantiles, and random deviates 
for all the distance distributions in much the same format as the d/p/q/r family of R functions for other distributions. For the 
fitted distance distributions in the dwp package, the functions ddd, pdd, qdd, and rdd serve as analogs to R’s dnorm, pnorm, 
qnorm, and rnorm for the normal distribution.

In addition to the xep models that have offset = log(exposure) to account for the area searched in each ring, ddFit will fit 
a few models that have a modified offset that serves dual purposes. In addition to accounting for area sampled in each ring, the 
modified offset alters the shape of the distribution in a standard way as the distance changes. These xep-like distributions with 
modified offset that are fit by ddFit include the normal, exponential, x2, Maxwell-Boltzmann, and inverse Gaussian. Finally, a 
model that assumes the carcass density is constant throughout the searched area is fit (table 1.1).

By default, a standard set of 12 distributions is fit, although others can be fit as well (table 1.2). Enter ?ddFit for details 
on the function, including how to specify which distributions to fit.

        **The leading coefficient is the ​β ​associated with the highest power of x in the polynomial.
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Table 1.1.  Poisson regressions, standard distributions.

[GLM, generalized linear model; NA, not applicable]

Distribution GLM form and density Extensibility

Constant log y ~ offset​(log​(ε​(x)​)​)​ NA

 f​(x)​   t∝   x  
xep1 log y ~ x + offset​(log​(ε​(x)​)​)​ ​β​ 1​​  <  0

 f​(x)​   ∝   x ​e​​ ​β​ 1​​x​  
xep01 (gamma) log y ~ log x + x + offset​(log​(ε​(x)​)​)​ 

​f​(x)​   ∝   x ​e​​ ​β​ 0​​logx +​ β​ 1​​x​​
​β​ 0​​  >  − 2, ​β​ 1​​  <  0

xep2 (Rayleigh) log y~​x​​ 2​ + offset(log​(ε​(x)​)​ ​β​ 2​​  <  0
 f​(x)​   ∝   x ​e​​ ​β​ 2​​​x​​ 2​​  
xep02 log y ~ log x + ​x​​ 2​ + offset​(log​(ε​(x)​)​)​  

​f​(x)​   ∝   x ​e​​ ​β​ 0​​logx + ​β​ 2​​​x​​ 2​​​
​β​ 0​​  >  − 2, ​β​ 2​​  <  0

xep12 log y ~ x + ​x​​ 2​ + offset​(log​(ε​(x)​)​)​ ​β​ 2​​  <  0

 f​(x)​   ∝   x ​e​​ ​β​ 1​​x + ​β​ 2​​​x​​ 2​​  
xep012 log y ~ log x  + x + ​x​​ 2​  + offset​(log​(ε​(x)​)​)​ 

​f​(x)​   ∝   x ​e​​ ​β​ 0​​logx + ​β​ 1​​x + ​β​ 2​​​x​​ 2​​​
​β​ 0​​  >  − 2, ​β​ 2​​  <  0

xep123 log y ~ x + ​x​​ 2​ + ​x​​ 3​ + offset​(log​(ε​(x)​)​)​ ​β​ 3​​  <  0

 f​(x)​   ∝   x ​e​​ ​β​ 1​​x + ​β​ 2​​​x​​ 2​​β​ 3​​​x​​ 3​​  
xep0123 log y ∼ log x + x + ​x​​ 2​ + ​x​​ 3​ + offset​(log​(ε​(x)​)​)​  

​f​(x)​   ∝   x ​e​​ ​β​ 0​​logx + ​β​ 1​​x +​ β​ 2​​​x​​ 2​ + ​β​ 3​​​x​​ 3​​​
​β​ 0​​  >  − 2, ​β​ 3​​  <  0

lognormal log y ~ log x + lo ​g​​ 2​ x + offset​(log​(ε​(x)​)​)​ 
​f​(x)​   ∝   x ​e​​ ​β​ 0​​log​(x)​ + ​β​ 1​​log​​(x)​​​ 2​​​

​β​ 1​​  <  0

truncated normal log y ~ x + ​x​​ 2​ + offset​(log​(ε​(x)​)​ − log x)​ ​β​ 2​​  <  0

 f​(x)​   ∝   x ​e​​ ​β​ 1​​x + ​β​ 2​​​x​​ 2​​  
Maxwell-Boltzmann log y ~ ​x​​ 2​ + offset​(log​(ε​(x)​)​ + log x)​ ​β​ 2​​  <  0

 f​(x)​   ∝    ​x​​ 2​ ​e​​ ​β​ 2​​​x​​ 2​​  

Table 1.2.  Poisson regressions, supplementary distributions.

[GLM, generalized linear model]

Distribution GLM form and density Extensibility

xep0 (Pareto) log y ~ log x + offset​(log​(ε​(x)​)​)​ ​β​ 0​​  <  − 2 and ​xε​[1, ∞]​​
 f​(x)​   ∝    ​x​​ ​β​ 0​​ + 1​  
xepi0 (inverse gamma) log y ~ 1 / x + log x + offset​(log​(ε​(x)​)​)​ ​β​ 0​​  <  − 2 and ​​β​ i​​  <  0​

 f​(x)​   ∝    ​x​​ ​β​ 0​​ + 1​ ​e​​ ​β​ 1​​/x​  
Chi-squared log y ~ log x + offset​(log​(ε​(x)​)​ − x / 2)​ ​β​ 0​​  <  − 2

 f​(x)​   ∝    ​x​​ ​β​ 0​​ + 1​ ​e​​ −x/2​  
Exponential log y ~ x + offset​(log​(ε​(x)​)​ − log​(x)​)​ ​β​ 1​​  <  0

 f​(x)​   ∝    ​e​​ ​β​ 1​​x​  
Inverse Gaussian log y ~ 1 / x + x + offset​((log​(ε​(x)​)​ − 5 / 2 log​(x)​)​ ​β​ i​​, ​β​ 1​​  <  0

 f​(x)​   ∝    ​√ 
_

 1 / ​x​​ 3​ ​ ​e​​ ​β​ 1​​x + ​β​ i​​1/x​  
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Model Characteristics
There are no universally accepted criteria for determining which model is definitively the “best.” When the model must 

be extrapolated well beyond the range of data, the problem becomes much more difficult. How well a model fits within the 
range of the data may give very little indication of how well it will fit outside the range of data. Conventional tools like Akaike 
Information Criterion (AIC) can be very useful for comparing how well various models fit the data, but two models that are 
virtually indistinguishable within the range of data can diverge substantially outside the range of data. However, there are 
some useful guidelines for model selection that are discussed briefly here and in greater detail in the discussions in section, 
"Examples” and in appendix 3.

1.	Models with lower Akaike information criterion corrected for finite sample size (AICc) scores give better fits within the 
range of the data. Models with AICc scores within about 4 are considered indistinguishable by this measure. AICc scores 
are less informative about model reliability for extrapolating outside the search radius. Models with ΔAICc scores greater 
than 10 do not seem to fare as well as models with ΔAICc <5, where ΔAICc is the difference between AICc value for a 
given model and the lowest AICc value among the models tested.

2.	Models with heavy tails tend to overestimate the fraction of carcasses falling outside the search radius when the search 
radius is long. The weight of the tail is primarily a function of the degree of the polynomial. For example, the tail of an xep 
distribution with degree 2 will have a lighter tail than one with degree 1. The weight of the tail also depends somewhat on 
the other terms in the polynomial, with lower order terms contributing to lighter tails.

3.	Road and pad searches (RP) or other search patterns in which the proportion of area searched per ring decreases with 
distance from turbine and the search coverage is low but non-zero for a broad range of distances greater than about 40 m 
can lead to reduced stability in the models. In this situation:

•	 There will be a tendency to overestimate the fraction of carcasses inside the search radius if no carcasses are found at 
great distances, and we recommend using a relatively heavy-tailed distribution in these situations to account for the 
possibility of significant numbers of carcasses outside the search radius; and

•	 There will be a tendency to strongly underestimate the fraction of carcasses inside the search radius if carcasses are 
found at great distances, and we recommend using a relatively light-tailed distribution in these situations.

4.	Distributions of small carcasses tend to have heavier tails than distributions of large carcasses because the small carcasses 
are more strongly affected by wind and are blown farther under high wind conditions and are not flung as far under light 
wind conditions, as shown in ballistic simulations in appendixes 2 and 3.
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Appendix 2.  Mechanistic and Ballistics Models of Carcass 
Deposition

To explore properties of carcass density models and their performances on known data, we generated carcass distributions 
according to a ballistics model similar to those used by Hull and Muir (2010) and by Prakash and Markfort (2020). Models are 
fit to simulated carcass dispersions under several different scenarios with different carcass types (eagle and bat), wind regimes, 
and carcass search protocols. Because the actual (simulated) carcass distributions are known, models can be compared with each 
other based on how well they are able to predict the true data under various conditions.

Mechanistic Model
Physics puts a fairly strict limit on how far carcasses may fall from the turbine. Gravity inexorably pulls them to the ground 

after a brief time. Excluding cases where (1) a bird or bat is not killed immediately but is able to fly or walk a great distance 
after getting struck by a turbine blade; (2) a carcass is carried a great distance by a scavenger; (3) a carcass is swept upward or 
downward by a wind with a strong vertical component; or (4) a carcass is blown or rolls a great distance after landing, we can 
use well-known differential equations from ballistics modeling to get a qualitative understanding of carcass spatial distributions 
around a turbine. The general shape of the tails of the carcass distribution is of particular interest because it informs the choice of 
parametric distribution for empirical modeling of carcass distributions and estimation of the proportion of carcasses landing in 
the searched areas.

Mechanistic differential equation models can be useful in addressing simple, qualitative questions about carcass dispersion. 
Which general shapes of distributions are best in which types of situations? How well does Akaike information criterion 
corrected for finite sample size (AICc) perform for identifying models that will most accurately predict the fraction of carcasses 
landing in the searched area? How do carcass size and wind speed broadly affect the distribution of carcasses on the ground?

Ballistics Model
Unlike the qualitative understanding achievable through mechanistic models, a quantitative understanding that accurately 

predicts the actual distributions of carcasses in the field as a function of environmental covariates such as wind profile 
and turbine size is much more difficult and may not be feasible. The precise distribution critically depends on a number of 
parameters and assumptions that are difficult to validate in the field. The following factors all have significant impacts on the 
resulting carcass distribution on the ground, but none of them are known with any practical, quantitative degree of reliability:

•	 Wind speed and direction at the time of strike,

•	 Strike location on the blade,

•	 Carcass velocity at the time of strike,

•	 Change in carcass velocity upon strike (angle of the blade, transfer of momentum from blade to carcass),

•	 Drag coefficient and its change during flight as carcass changes shape and direction,

•	 Rotor speed at time of collision,

•	 Carcass fluttering or spinning after collision,

•	 Dependence of wind velocity on position (including wind shear and wake effect),

•	 Turbulence behind the blade, 

•	 Displacement by scavengers after landing, and

•	 Even the type of ground cover (which affects the wind gradient with height).
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If we make a few simplifying assumptions, the ballistics equations are not difficult. We start by assuming that the animal 
is killed upon impact with the turbine blade and that the wind is blowing horizontally (with no vertical component) and normal 
to the plane of the blades. Like Prakash and Markfort (2021) and Hull and Muir (2010), we ignore the wake effect behind the 
turbine, but we do include wind shear (Bañuelos-Ruedas and others, 2011).

To calculate a carcass, landing position after being struck by a turbine, we first define a coordinate system centered at the 
base of the turbine to track carcass position in three dimensions, s = (x, y, w), where x is the horizontal position in the plane of 
the turbine blades, y is height above the ground, and w is the horizontal distance normal to the plane of the turbine blades in the 
downwind direction. We then use ballistics differential equations to describe the trajectory of the carcass as a function of time.

Define x and y to be the horizontal and vertical displacements of a carcass from the turbine base, and w, the distance 
downwind from the turbine. If s(t) is the position vector of the carcass as a function of time and v(t) = ​​s ′ ​​(t) is the velocity, then 
the pair (s(t), v(t)) is a 6-dimensional vector which satisfies a set of first order differential equations:

	​​ s ′ ​​(t)​ ​ =  v​(t)​​� (2.1)

	​​ v ′ ​​(t)​ ​ =  η​(v​(t)​ − w​(s​(t)​)​)​  ∥  v​(t)​ − w​(s​(t)​)​  ∥  − G​� (2.2)

where
​w​(s​(t)​)​​		  is the wind velocity at s(t),

​n ​ =  9.807 / ​y'​ T​   ​ ​​​​ 2​​ (with ​​y'​ T​   ​ ​. = terminal velocity of the carcass)	 is an aerodynamic constant associated with each carcass 
type, and

G = [0, 9.807, 0]	 is the acceleration due to gravity.

Given an initial carcass strike point on the blade and an initial carcass velocity, we track the trajectory of the carcass 
through space using the method of lines with Δt = 0.01 seconds. The final position of the carcass on the ground is (x, w) 
when y = 0.

This set of governing equations is similar to those used by Prakash and Markfort (2021) but allows wind speed to vary with 
carcass position, thereby enabling the accommodation of wind shear and wake effect. Like Hull and Muir (2010) and Prakash 
and Markfort (2021), we ignore the wake effect. We do account for wind shear through the Wind Power Law, or

	​ w​(y)​ ​ =  w​(​y​ n​​)​y / ​y​ n​ a​​� (2.3)

where
	 w(y)	 is the wind speed at y meters above the ground,

	​​ y​ n​​​	 is the height of the nacelle, and

	 a	 is the Hellman coefficient (Counihan, 1975).

Additionally, we assume that the cross-sectional area of the carcass presented to the wind (A) and the drag coefficient (​​C​ d​​​) 
are constant, so the term ​0.5 ​C​ d​​ Aρ / m​ (Hull and Muir, 2010; Prakash and Markfort, 2 021) simplifies to ​9.807 / ​y'​ T​   ​ ​​​​ 2​​ after noting 
that the terminal velocity is the vertical velocity at which the wind resistance equals the force of gravity so there is no longer 
any vertical acceleration. Therefore, terminal velocity,​​{​y ′ ​, T}​​, is the velocity such that​ ρ / 2 ​C​ d​​ A / m × ​y'​ T​   ​ ​​​​ 2​ − g  =  0,​ from Prakash 
and Markfort’s (2021) equations 3 and 4, with no acceleration in the horizontal directions, giving ​ρ / 2 ​C​ d​​ A / m  =  G / ​y'​ T​   ​ ​​​​ 2​  =  η​. 
Thus, the terminal velocity, which is relatively easy to measure and is relatively well known, is used in lieu of the product of 
parameters with largely unknown values (​​C​ d​​​ and A).
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Simulation Parameters
We used the ballistics model described in the previous section to explore the effects of carcass type, wind regime, strike 

position, and flight speed on carcass distributions on the ground (section, “Distributions of Carcass Distances”). Random carcass 
locations were generated from the carcass distributions and then sampled to create simulated datasets. Distributions were fit to 
the simulated datasets using ddFit. Statistical properties of the models are explored and discussed in appendix 3 to provide 
guidance on dwp model selection.

Parameter values used in the carcass dispersion models and simulations are a mix of fixed constants (such as turbine 
specifications) that are constant across the simulation scenarios and variable parameters that may differ among carcasses and 
simulation scenarios (table 2.1).

The Hellman coefficient governs the wind shear or the tendency for wind speed to increase with height. It is a measure of 
the coarseness of the landscape texture (Kaltschmitt and Wiese, 2007), with smaller values corresponding to smoother surfaces 
and smaller changes in wind speed with height. Values typically range from about 0.05 for very smooth ground to 0.5 or 0.6 for 
cities with high-rise buildings.

The terminal velocity is a measure of an object’s air resistance and is an amalgam of the drag coefficient (Cd), the 
cross-sectional area presented to the wind, the air density—all of which are unknown—and the object’s mass. The terminal 
velocity is used in lieu of the product of parameters with largely unknown values. We assume a value of 8.8 meters per second 
(m/s) for the terminal velocity for bats, which we calculated from data given by Grodsky and others (2011).1 We used a terminal 
velocity of 25 m/s for eagles, which is slightly less than it is for live cats (Whitney and Mehlhaff, 1987).

Turbine nacelle height and blade length match those of the 1.8-megawatt Vestas V90 turbine. We assume the turbine 
is operating at a tip speed ratio of 6; that is, that the tips of turbine blades are moving at six times the wind speed, while the 
wind varies.

Simulation scenarios assume that strike position is uniformly distributed in the plane of the blades and that the initial 
velocity of the carcass after being struck is equal to the sum of the blade and carcass velocities at the point of impact.

1Grodsky and others (2011) reported that bats took an average of 10–12 seconds to fall 91.4 meters in an experiment. Terminal velocity is the velocity, y', at 
which the carcass is no longer accelerating as it falls but is falling at a constant rate, that is ( )2 0′ = − + ′ =′ Ty G A y , where y'T is the terminal velocity, A is the 

projected area, and G is the acceleration due to gravity. Solving for y, we get ( ) ( )( )0 log cosh 3.1305 /= −y t y t A A . Then, taking the initial height as 
y0 = 91.4 and the final height after 11 seconds as y(11) = 0, we get A = 0.1263 and a terminal velocity of y'T = 8.8 m/s for bats, which is in good agreement with 
the findings of Prakash and Markfort (2020).

Table 2.1.  Parameters used in the ballistics model and simulations.

[m, meter; m/s, meter per second; m/s2, meter per second squared]

Parameter Value

  Fixed across scenarios

nacelle height 80 m
blade length r0 = 45 m
tip speed ratio 6
acceleration due to gravity G = 9.807 m/s2

Hellman coefficient α = 0.22
strike position on the blade random uniform

  Varying among scenarios

terminal velocity Vt = 8.8 m/s for bats, 
and Vt = 25 m/s for eagles

wind speed low, moderate, high
wind profile constant, varying
carcass initial horizontal velocity 0, varying (up to 8 m/s)
search plot type cleared, roads and pads
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Wind speeds behind the turbine and at the height of the nacelle were either constant at 4, 8, or 12 m/s or varying with low, 
moderate, or high average. Winds in the low wind speed regime were assumed to be Weibull distributed with mean of 5.32 m/s 
and standard deviation of 2.78 m/s. The high wind speed regime also was assumed to be Weibull distributed, with mean of 9.18 
m/s and standard deviation of 2.1 m/s. The moderate wind speed regime mimics the winds measured at a site in the Netherlands, 
with a mean of 7.5 m/s, standard deviation of 1.25 m/s, and having a PDF of wind speeds of ​f​(w)​  = ​ 10​​ −0.04​​(w−7)​​​ 2​−0.8​​, which 
approximately fits the moderate wind profile (row W80, column JJA) of He and others (2013, fig. 2). In all cases, no carcasses 
were produced when wind speeds were <3.5 m/s. Wind direction was assumed to be uniformly distributed, with no prevailing 
direction.

Animal flight velocity was assumed to be constant in one-half the scenarios and variable in one-half. In the constant 
scenarios, carcasses attain the same velocity as the turbine blade at the point of impact upon being struck, implying a coefficient 
of restitution of e = 1, following Hull and Muir (2010) and Prakash and Markfort (2020). In the variable scenarios, flight speed 
relative to the ground was assumed to be 8 m/s with 0 vertical component but horizontal direction varied uniformly between 
0 and 2π, with the component of carcass initial velocity in the plane of the blades (x) erased at the moment of impact and the 
component normal to the plane of the blades (w) added to the wind velocity.

The zone where carcasses are likely to fall would be expected to extend to a radius at least as great as the turbine blades 
(r0). Carcasses may land outside that range if the impact from the blade knocks them beyond r0 in the plane of the blades or if 
the wind carries them beyond r0 in the windward direction. Figure 2.1 compares the carcass fall zones for eagles and bats at 
wind speeds of 4, 8, and 12 m/s, showing images of the disk spanned by the turbine blades projected onto carcass dispersion 
patterns on the ground. The contours are mappings of concentric rings around the turbine hub to the position on the ground 
where an eagle or bat carcass would be expected to fall under the given wind speed and carcass type under the conditions of the 
simulation scenario (table 2.1).

Eagle carcasses are large, and, compared to small carcasses, their trajectories are less affected by the wind. Like a baseball 
getting struck by a bat, an eagle directly hit by a turbine blade is flung in the direction dictated by the blade, with relatively 
little modification of its subsequent trajectory by the wind. In the simulations, under low wind speed conditions (4 m/s) eagle 
carcasses fell near the line of the blades. With stronger winds, carcasses landed significantly downwind (fig. 2.1).

By contrast, bat carcasses are small and may be carried aloft by the wind for great distances, like dandelion seed thrown 
into the air on a windy day. In the simulations, even at the relatively low wind speed of 4 m/s, carcasses struck near the top 
of the swept area were blown more than 50 m, significantly beyond the r0 = 45 m blade length (fig. 2.1). Greater windspeeds 
had little effect on the distribution of carcasses in the plane of the blades (left-right in fig. 2.1) but a substantial effect on the 
distribution of carcasses in the downwind direction (bottom to top in fig. 2.1). With a wind of 12 m/s, carcasses near the top of 
the swept area were blown close to 200 m.
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Figure 2.1.  Projection of (A) eagle and (B) bat turbine-carcass strike points onto the ground. Turbine is located at (0, 0), with wind 
blowing north (bottom to top) at a constant velocity. Lines are projected images of turbine-carcass strike points onto the ground. 
Contours correspond to strike points on the blades in concentric rings with radii of 5, 10, ..., 45 meters. Shading marks the span of the 
turbine blades in the x direction.

Distributions of Carcass Distances
Because bats are more heavily influenced by the wind than eagles and are blown farther, a smaller proportion of bats is 

expected to fall very close to the turbine, as reflected in the histograms of simulated carcass distances shown in figures 2.2 
and 2.3.

The eagle histograms are qualitatively similar to those constructed for large birds by Hull and Muir (2010, fig. 2). Under 
most of the simulated conditions, the distributions have relatively flat tops over much of the range of distances but then decrease 
precipitously. The most consequential difference between our model and that of Hull and Muir (2010) is that the latter neglects 
the downwind direction. Because eagle carcasses are typically not blown far by the wind after being struck, the downwind 
direction plays a relatively minor role in determining eagle distance distributions, which explains the similarity between the 
patterns in figure 2.2 and those observed by Hull and Muir (2010).
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Figure 2.2.  Distances of eagle carcasses to turbine. Upon collision with a turbine blade, carcass velocity 
takes on the velocity of the blade plus the flight speed. Flight speed is either assumed to be 0, in which case 
initial carcass velocity equals turbine blade velocity at point of impact, or variable, in the range of wind 
speed plus or minus 18 meters per second (m/s). SD, standard deviation.

The bat histograms (fig. 2.3) show relatively few carcasses very near the turbines and more of a classic bell shape (albeit, 
somewhat right-skewed) than the eagle histograms. That these bat histograms bear little resemblance to those of Hull and Muir 
(2010, fig. 2) and Prakash and Markfort (2020, fig. 9) is due to the importance of the downwind direction, which is included in 
our model but neglected in the other two.
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Figure 2.3.  Distances of bat carcasses to turbine. Upon collision with a turbine blade, carcass velocity 
takes on the velocity of the blade plus the flight speed. Flight speed is either assumed to be 0, in which case 
initial carcass velocity equals turbine blade velocity at point of impact, or variable, in the range of wind 
speed plus or minus 8 meters per second (m/s). SD, standard deviation.
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Appendix 3.  Fitting Parametric Distributions to the 
Dispersion Patterns

The general shape of the actual distribution of carcasses varies with the ballistics parameters and environmental conditions. 
The performance of a fitted distribution depends on how well the distribution family’s shape conforms to the actual distribution 
and, perhaps even more critically, how accurately the fitted model reflects the distribution of carcasses lying outside the 
searched area.

In practice, the search radius is finite, and a fitted model does not “know” what fraction of carcasses lie inside the search 
radius and has to “guess” based on its general shape. If the general shape happens to align well with the true distribution, the 
prediction of the fraction lying outside the search radius will be accurate; if not, the error may be substantial.

The ballistics modeling suggests that eagle carcass distributions are often likely to be relatively flat near the turbine but 
decrease precipitously with distance at some point (fig. 2.2), so that, under many conditions, eagle distributions would be 
expected to be light-tailed. Thus, relatively heavy-tailed distributions such as the lognormal and xep1 would usually not be 
a good match for eagle distributions. By contrast, the simulations suggest that bat carcass distributions will tend to have few 
carcasses very near the turbines, and, compared with the eagle distributions, a more gradual climb to a narrower peak (fig. 2.3) 
and have a different suite of distributions with the best fits.

Although some broad descriptions of model characteristics and their general applicability can be made, it may not be 
possible to determine a priori which particular models will provide the best predictions in a given situation. Factors like wind 
regime and species determine the actual distribution of carcasses, but other factors—like search radius and plot shape (for 
example, cleared plots or roads and pads)—can heavily influence the aptness of a model for predicting the fraction of carcasses 
outside the searched area. Selecting a specific model for a specific situation must be done on a case-by-case basis.

Model Accuracy in Estimating Probability of a Carcass Lying Inside the 
Searched Area

The accuracy of a carcass distribution model for predicting the probability that a carcass lies in the searched area depends 
on (1) how well the model conforms to the shape of the actual distribution and (2) how the fit inside the searched area can be 
extended outside the searched area. There are two types of unsearched areas—(1) unsearched areas outside a search radius, 
and (2) unsearched areas inside a search radius. Spatial prediction for carcasses outside a search radius involves extrapolation, 
and accuracy requires making effective use of additional information, apart from the data itself because a good or even 
perfect fit within the range of data gives no guarantee of a good or even plausible fit outside the range of the data. Prediction 
for unsearched areas inside a search radius involves interpolation, and the relative quality of a model’s fit to the data inside 
a searched area (for example, Akaike information criterion corrected for finite sample size [AICc]) is a reasonable guide for 
model selection for interpolation. Thus, wind conditions, carcass type, search radius, and plot shape are all important factors in 
determining which models will provide the most accurate predictions.

We tested the model predictions for the standard dwp models (appendix 1) in a variety of simulation scenarios (table 2.1), 
with n = 1,000 replicates for each scenario. For each replicate, 200 random carcass distances were generated from the distance 
distributions arising from the ballistics models for eagles and bats under the wind regimes described in table 2.1 and appendix 2, 
section, “Distributions of Carcass Distances,” and shown in figures 2.2 and 2.3. Random directions were generated as uniform 
(0,2π) deviates. Carcasses that lay inside the searched area (fig. 3.1) were found and included in the data used for fitting the 
models. Carcasses that lay outside the searched area were not included. For replicates in which at least five carcasses were 
found, each of the standard dwp models was fit and ​​ ̂  ψ ​​ was calculated using the maximum likelihood estimator for the model 
parameters whenever the model was extensible. For each simulation scenario, boxplots of ​​ ̂  ψ ​​ are presented for each of the 
standard dwp models (figs. 3.2–3.13), ordered by degree of the polynomial in the model (table 1.1).

Accuracy of Estimated Probability of a Carcass Lying Inside the Searched Area—Eagles Under 
Constant Winds and Cleared Search Plots

For eagle locations simulated under constant wind conditions, the probability density functions (PDF) of the 
carcass-generating distributions was fairly flat out to a certain point but then decreased rapidly to zero (fig. 3.2). Under these 
conditions, a short search radius misses the precipitous decrease in the PDF, and the empirical models have great difficulty 
estimating the fraction of carcasses inside the search radius.
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Figure 3.1.  Search areas used in the simulations. Searches were conducted out to radii of 50, 100, or 150 meters from the turbine and 
included either all carcasses inside the search radius (cleared plot) or only those carcasses on the roads and turbine pads (RP). Figure 
shows carcasses found on an RP search out to 150 meters.

At 4 meters per second (m/s), the PDF of carcasses (fig. 3.2, histogram on bottom left) begins a long decrease as 
distance increases beyond approximately 10 meters (m). The heavy-tailed lognormal continues the gradual decrease past 
the search radius, unable to accommodate the sharp decrease beginning at about 75 m. As a result, the lognormal regularly 
underestimates ​​ ̂  ψ ​​ under these conditions as the model implicitly assumes that there is a substantial number of carcasses past the 
search radius. By contrast, the distributions with degree greater than or equal to (≥) 2 have an inherently greater acceleration 
in the rate of decrease in the PDF and tend to predict fewer carcasses inside the search radius than do the heavier-tailed 
distributions. With a search radius of 100 m, all carcasses fell inside the search plot, and all the fitted distributions except the 
lognormal routinely estimated ​​ ̂  ψ ​​ > 0.9.

At 12 m/s (fig. 3.2, right column), the situation changes substantially. The PDF of carcasses is largely flat but gradually 
increasing with distance from the turbine until about 125 m, when the density decreases rapidly to zero. The short search radius 
(r = 50 m) entirely misses the decrease, and almost all the fitted distributions vastly overestimate the fraction of carcasses inside 
the search area as their implicit assumptions about how the density would converge to zero are in error, resulting in curves 
that underestimate the extent of the flat part of the density. The relatively heavy-tailed lognormal and xep1 distributions are 
forced to decrease gradually from their peak, and their degree of overestimation of ​​ ̂  ψ ​​ in this scenario is modest compared to the 
lighter-tailed distributions.

The distributions of carcasses within the first 100 m from a turbine were similar for winds of 8 and 12 m/s (fig. 3.2, 
histograms), so the r = 50 and 100 m search radii yield similar fitted distributions (fig. 3.2, comparing the 8 m/s panels with the 
12 m/s panels for r = 50 and 100 m). However, the accuracy of the estimates depends on the target (fig. 3.2, true ѱ).
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Accuracy of Estimated Probability of a Carcass Lying Inside the Searched Area—Eagles Under 
Constant Winds and Constant Flight Speeds for Road and Pad Searches

Under constant wind conditions, predictions across the fitted distributions were more consistent in the road and pad 
searches (fig. 3.3) than in the cleared plot searches (fig. 3.2). In each panel, the distinctions among the fitted distributions were 
slight. However, the lognormal almost always estimated a smaller fraction of carcasses inside the searched area than did all other 
models. The only exceptions were for a short search radius was short (r = 50 m) and the wind speed was 8 or 12 m/s, in which 
case model xep1 had the smallest (and most accurate) estimates for ѱ. When the search radius was not short (r = 100 or 150 m), 
there was little distinction among the model fits.
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Figure 3.2.  Estimated probability of a carcass lying inside the searched area for the standard models with 200 simulated eagle 
fatalities with winds constant, flight speed constant, and cleared-plot searches. r, search radius, in meters.
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Figure 3.3.  Estimated probability of a carcass lying inside the searched area for the standard models with 200 simulated eagle 
fatalities with winds constant, flight speed constant, and road and pad searches. r, search radius, in meters.
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Accuracy of Estimated Probability of a Carcass Lying Inside the Searched Area—Eagles Under 
Varying Winds and Constant Flight Speed for Cleared Plot and Road and Pad Searches

The eagle distributions and fitted models under variable winds (figs. 3.4 and 3.5) were similar to those under constant 
winds (figs. 3.2 and 3.3). Refer to sections “Accuracy of Estimated Probability of a Carcass Lying Inside the Searched Area—
Eagles Under Constant Winds and Cleared Search Plots” and “Accuracy of Estimated Probability of a Carcass Lying Inside the 
Searched Area—Eagles Under Constant Winds and Constant Flight Speeds for Road and Pad Searches” for discussion.
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Figure 3.4.  Estimated probability of a carcass lying inside the searched area for the standard models with 200 simulated eagle 
fatalities with winds variable, flight speed constant, and cleared plot searches. r, search radius, in meters.
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Figure 3.5.  Estimated probability of a carcass lying inside the searched area for the standard models with 200 simulated eagle 
fatalities with winds variable, flight speed constant and road and pad searches. r, search radius, in meters.
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Accuracy of Estimated Probability of a Carcass Lying Inside the Searched Area—Eagles Under 
Varying Winds and Flight Speeds (Cleared Plot Searches, Road and Pad Searches)

The eagle distributions under variable winds and variable flight speed (figs.3.6 and 3.7) were notably less flat than the eagle 
scenarios in which the effect of initial flight speed was nullified upon impact by the turbine blade. The estimated proportion of 
carcasses inside the searched area generally decreased with the order of the fitted distribution, with the accuracy increasing with 
search radius. There was a marked tendency for models to overpredict ​​   ψ ​​ with road and pad searches, especially when the search
radius was short (r = 50 m). That tendency to overpredict was fully compensated for in the lognormal and xep1 models, which, 
as heavy-tailed distributions, naturally tend to underpredict.
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Figure 3.6.  Estimated probability of a carcass lying inside the searched area for the standard models with 200 simulated eagle 
fatalities with winds variable, flight speed variable, and cleared plot searches. r, search radius, in meters.
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Figure 3.7. Estimated probability of a carcass lying inside the searched area for the standard models with 200 simulated eagle 
fatalities with winds variable, flight speed variable, and road and pad searches. r, search radius, in meters.

Model Accuracy of Estimated Probability of a Carcass Lying Inside the Searched Area for 
Simulated Bat Locations

Bat carcass distributions tended to have fewer carcasses near the turbine and a somewhat more elongated right tail than the 
eagle distributions (figs. 3.8–3.13). As with the eagles, the models tended to overpredict by a substantial mar gin when the search 
radius was short (r = 50 m), variation among model predictions was much smaller for road and pad searches than for cleared 
plot searches, and    ψ̂     tended to decrease with the degree of the model (as reflected in the decreasing trend in the boxes in
figs. 3.8–3.13).
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Figure 3.8.  Estimated probability of a carcass lying inside the searched area for the standard models with 200 simulated bat fatalities 
with winds constant and cleared plot searches. r, search radius, in meters.
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Figure 3.9.  Estimated probability of a carcass lying inside the searched area for the standard models with 200 simulated bat fatalities 
with winds constant and road and pad searches. r, search radius, in meters.
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Figure 3.10.  Estimated probability of a carcass lying inside the searched area for the standard models with 200 simulated bat fatalities 
with winds variable and cleared plot searches. r, search radius, in meters.
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Figure 3.11.  Estimated probability of a carcass lying inside the searched area for the standard models with 200 simulated bat fatalities 
with winds variable and road and pad searches. r, search radius, in meters.
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Figure 3.12.  Estimated probability of a carcass lying inside the searched area for the standard models with 200 simulated bat fatalities 
with winds variable, flight speed variable, and cleared plot searches. r, search radius, in meters.
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Figure 3.13.  Estimated probability of a carcass lying inside the searched area for the standard models with 200 simulated bat fatalities 
with winds variable, flight speed variable, and road and pad searches. r, search radius, in meters.
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The same pattern naturally arises with the road and pad searches. The sample is likely to not have any carcasses at great 
distances because the search coverage is too low there. The light-tailed distributions decrease rapidly, so there is not much 
probability in the tails and they overestimate the fraction of carcasses in the search radius. As the search radius increases, the 
heavy-tailed distributions tend to model a lot of carcasses farther out, and consequently they tend to underestimate the fraction 
falling in the searched area.

Akaike Information Criterion, Model Accuracy, and Probability of a Carcass 
Lying Inside the Searched Area

The Akaike information criterion (AICc) is a well-tested and commonly used tool for model selection (Burnham and 
Anderson, 2002) and has proven to be effective for distinguishing among models by the relative quality of the fit to the data. 
However, its validity is limited to the range of the data, and there is no guarantee that models that perform well within the range 
of the data will perform well—or will even be remotely plausible—when extended outside the range of the data, as must be done 
when predicting the proportion of carcasses that lie outside the searched area (1 − ​​   ψ ​​). To test the utility of AICc for prediction 
of ​ψ​, we summarized the results from the simulations in section, “Model Accuracy in Estimating Probability of a Carcass Lying 
Inside the Searched Area” by ΔAICc (the difference between AICc value for a given model and the lowest AICc value among 
the models tested), binning the ​​ ̂  ψ ​​ values by the ΔAICc scores of the fitted model. For example, for eagles under constant wind 
speeds of 4 m/s and searched on cleared plots out to a radius of r = 50 m, we generated 1,000 simulated datasets, fit the 11 
standard dwp models, and binned the ​​ ̂  ψ ​​ values according to their ΔAICc scores (fig. 3.14, upper left panel). The boxplot of ​​ ̂  ψ ​​ 
values for ΔAICc = 0 summarizes the collection of ​​ ̂  ψ ​​’s for the best-fitting model in each of the 1,000 replicate datasets. The 
boxplot for ΔAICc = 0–1 is a summary of the ​​ ̂  ψ ​​ values for models with ΔAICc ∈ (0, 1) and the rightmost boxplot in each panel 
is for models with ΔAICc ≥10.

Eagles

For eagles under constant wind conditions and the initial carcass position and velocity are taken to be that of the rotor at 
the point of impact, the distribution (PDF) of carcasses was fairly flat out to a certain point but then decreased rapidly to zero 
(fig. 2.2, left panels). Under these conditions, a short search radius misses the precipitous decrease and empirical models have 
great difficulty estimating the fraction of carcasses inside the search radius. The key feature of the distribution—namely, the 
point marking the beginning of the steep decrease—is absent from the data, so measures of how well the models fit within the 
range of the data (AICc, for example) cannot make meaningful distinctions among the models for extrapolating outside the 
search radius.

In general, for cleared plots and constant wind speeds, ΔAICc was largely unrelated to accuracy in predicting ​ψ​. For search 
radii of r = 50, 100 m, ​​ ̂  ψ ​​ tended to increase with ΔAICc (fig. 3.14), presumably because the heavier-tailed models tended to fit 
better within the range of data than the lighter-tailed models. However, the actual simulated carcass distributions are light-tailed, 
so ΔAICc gives an unreliable measure of the aptness of the model fits. For example, at 8 m/s, and a short search radius (fig. 3.14, 
top middle panel), the higher the ΔAICc, the poorer the prediction. However, with a longer search radius and a corresponding 
greater fraction of carcasses inside the search radius, the greater the ΔAICc, the better the prediction, the best-fitting models had 
by far the least accurate predictions (fig. 3.14, center panel).

When the search radius was close to the maximum carcass distance, as in the high winds, long search radius example, the 
ΔAICc tended to successfully select the model with the best estimate of ​ψ​ (bottom right panel). When windspeeds decreased (4 
or 8 m/s) but search radius remained long (bottom row left and center, or middle row at left), few if any carcasses fell outside 
the search radius and all models did well at determining that ​ψ​ = 1. These scenarios are effectively interpolation rather than 
extrapolation given the length of the search radius and the shape of the generating distributions.
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Figure 3.14.  Estimated probability of a carcass lying inside the searched area for the standard models binned by (ΔAICc), with 200 
simulated eagle fatalities with winds constant and cleared plot searches. AICc, Akaike information criterion corrected for finite sample 
size; ΔAICc, difference between AICc value for a given model and the lowest AICc value among the models tested; r, search radius, in 
meters.
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Because ΔAICc applies strictly to the fit of models within the range of data, we would expect ΔAICc to perform better 
when the fraction of carcasses inside the search radius is higher, as illustrated in figure 3.14 for r = 150 m, where close to 100 
percent of the carcasses lie inside the search radius, and, in the case where there are distinctions among models (lower right 
panel), greater ΔAICc values are associated with poorer fits. However, in the center panel (8 m/s and r = 100 m), 90 percent of 
the carcasses lie inside the search plot but the best predictors tended to be the models with the poorest fits within the range of 
the data. In this simulation scenario, the distribution of carcasses was largely flat within the 100 m search radius but decreased 
rapidly to zero just outside the search radius, requiring a light-tailed distribution in order to capture the abrupt end of the 
distribution. However, it is the heavy-tailed distributions that fit best within that first 100 m from the turbine, hence the inverse 
relationship between the quality of the fit within the range of data and the adequacy for prediction outside the range of the data.

With road and pad sampling, much of the spatial prediction is in extending the models to the unsearched area inside the 
search radius. Because interpolation to unsearched areas within the range of the data plays a large role in prediction of ​ψ​ from 
road and pad data, we would expect ΔAICc to be a better indicator of model accuracy than it was for the cleared plot searches. 
Indeed, lower ΔAICc values do seem to be somewhat associated with more accurate prediction in the road and pad searches 
(figs. 3.15, 3.17, and 3.19) than in the corresponding cleared plot searches (figs. 3.14, 3.16, and 3.18, respectively).

Bats

Figure 3.20 shows bat carcass distributions and estimated probabilities that carcasses lie in the searched area for constant 
wind speeds of 4, 8, and 12 m/s and cleared plot search radii of 50, 100, and 150 m. As with eagles, AICc does not appear to be 
a useful predictor of model performance in estimating ​ψ​ except in cases where the search radius is large enough to encompass 
nearly the whole of the distribution.

For bat carcasses, ΔAICc appears to be even less reliable for selecting the most accurate models for ​ψ​ than it was for eagle 
carcasses. In some cases, the worse-fitting models (high ΔAICc) gave more accurate predictions (for example, fig. 3.20, upper 
right panel, with 12 m/s winds and search radius of r = 50 m); in some cases, the best-fitting models gave the most accurate 
predictions (for example, fig. 3.20, center panel, with 8 m/s winds and search radius of r = 100 m); in most cases, though, there 
was little discernible relationship between ΔAICc and accuracy (figs. 3.20–3.25).

The road and pad searches yielded accurate predictions for ​ψ​ for bats under constant or variable windspeeds (figs. 3.21, 
3.23, and 3.24)1, except when the search radius was too short to capture the distribution’s decrease in the right tail, in which case 
models tended to vastly overestimate ​ψ​. The ΔAICc had very little predictive value because ΔAICc measures relative fit within 
the range of the data but gives no information on how well the model extrapolates beyond the data or whether a given model 
happens to have a tail that matches that of the actual carcass distribution.

Under the conditions of figure 3.23, it is remarkable how performance appears to be almost entirely independent of AICc.

1The missing boxplots in the upper right panel of fig. 3.21 are due to so few models being able to fit viable distributions to the data because the carcass PDF 
did not start its decrease to zero until well outside the search radius of 50 m.
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Figure 3.15.  Estimated probability of a carcass lying inside the searched area for the standard models binned by (ΔAICc), with 200 
simulated eagle fatalities with winds constant and road and pad searches. AICc, Akaike information criterion corrected for finite 
sample size; ΔAICc, difference between AICc value for a given model and the lowest AICc value among the models tested; r, search 
radius, in meters.
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Figure 3.16.  Estimated probability of a carcass lying inside the searched area for the standard models binned by (ΔAICc), with 200 
simulated eagle fatalities with winds variable and cleared plot searches. AICc, Akaike information criterion corrected for finite sample 
size; ΔAICc, difference between AICc value for a given model and the lowest AICc value among the models tested; r, search radius, in 
meters.
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Figure 3.17.  Estimated probability of a carcass lying inside the searched area for the standard models binned by (ΔAICc), with 200 
simulated eagle fatalities with winds variable and road and pad searches. AICc, Akaike information criterion corrected for finite sample 
size; ΔAICc, difference between AICc value for a given model and the lowest AICc value among the models tested; r, search radius, in 
meters.
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Figure 3.18.  Estimated probability of a carcass lying inside the searched area for the standard models binned by (ΔAICc), with 200 
simulated eagle fatalities with winds variable, flight speed variable, and cleared plot searches. AICc, Akaike information criterion 
corrected for finite sample size; ΔAICc, difference between AICc value for a given model and the lowest AICc value among the models 
tested; r, search radius, in meters.
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Figure 3.19.  Estimated probability of a carcass lying inside the searched area for the standard models binned by (ΔAICc), with 200 
simulated eagle fatalities with winds variable, flight speed variable, and road and pad searches. AICc, Akaike information criterion 
corrected for finite sample size; ΔAICc, difference between AICc value for a given model and the lowest AICc value among the models 
tested; r, search radius, in meters.
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Figure 3.20.  Estimated probability of a carcass lying inside the searched area for the standard models binned by (ΔAICc), with 200 
simulated bat fatalities with winds constant and cleared plot searches. AICc, Akaike information criterion corrected for finite sample 
size; ΔAICc, difference between AICc value for a given model and the lowest AICc value among the models tested; r, search radius, in 
meters.
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Figure 3.21.  Estimated probability of a carcass lying inside the searched area for the standard models binned by (ΔAICc), with 200 
simulated bat fatalities with winds constant and road and pad searches. AICc, Akaike information criterion corrected for finite sample 
size; ΔAICc, difference between AICc value for a given model and the lowest AICc value among the models tested; r, search radius, in 
meters.
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Figure 3.22.  Estimated probability of a carcass lying inside the searched area for the standard models binned by (ΔAICc), with 200 
simulated bat fatalities with winds variable and cleared plot searches. AICc, Akaike information criterion corrected for finite sample 
size; ΔAICc, difference between AICc value for a given model and the lowest AICc value among the models tested; r, search radius, in 
meters.
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Figure 3.23.  Estimated probability of a carcass lying inside the searched area for the standard models binned by (ΔAICc), with 200 
simulated bat fatalities with winds variable and roads and pads searches. AICc, Akaike information criterion corrected for finite sample 
size; ΔAICc, difference between AICc value for a given model and the lowest AICc value among the models tested; r, search radius, in 
meters.
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Figure 3.24.  Estimated probability of a carcass lying inside the searched area for the standard models binned by (ΔAICc), with 
200 simulated bat fatalities with winds variable, flight speed variable, and cleared plot searches. AICc, Akaike information criterion 
corrected for finite sample size; ΔAICc, difference between AICc value for a given model and the lowest AICc value among the models 
tested; r, search radius, in meters.
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Figure 3.25.  Estimated probability of a carcass lying inside the searched area for the standard models binned by (ΔAICc), with 200 
simulated bat fatalities with winds variable, flight speed variable, and roads and pads searches. AICc, Akaike information criterion 
corrected for finite sample size; ΔAICc, difference between AICc value for a given model and the lowest AICc value among the models 
tested; r, search radius, in meters.
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Appendix 4.  Mortality Estimation and the Distinction Between 
the Probability of a Carcass Lying Inside the Searched Area and 
the Fraction of Carcasses Lying Inside that Area

Accurate estimation of the fraction of carcasses lying inside the searched area depends on both the probability that a carcass 
lies inside the searched area (​ψ​) and the number of carcasses that were found inside the searched area (X). For example, if ​ψ​ = 
0.2 and X = 2 carcasses were found at turbine A, the most likely total number of carcasses would be MA = 2/0.2 = 10 but MA 
could readily be anywhere in its 90 percent credible interval1of [4,26], and the fraction of carcasses lying inside the searched 
area at the turbine (​dw ​p​ A​​​) would likely be in the interval [2/26, 2/4] or 7.7–50 percent. By contrast, if ​ψ​ = 0.2 at turbine B 
too, but ​​X​ B​​​ = 20 rather than 2, then the credible interval for MB would be [73, 109], and the fraction of carcasses lying inside 
the searched area at turbine B (​dw ​p​ A​​​) would likely be in a much narrower interval—[20/139, 20/73] or 14.4–27.4 percent. 
The confidence interval for dwp properly reflects the greater relative information content of X = 20 compared to X = 2, but ​ψ​ 
does not.

To illustrate in another, more realistic way and validate the accuracy of the dwp estimator, we ran sets of 1,000 simulated 
collisions between bats and a turbine and the resulting dispersion of carcasses on the ground near the turbine. Carcass distances 
were generated according to a gamma distribution with 60 percent of the carcasses lying within 50 m of the turbine and 90 
percent within 100 m (that is, a gamma distribution with shape = 1.7744 and rate = 0.0355). Carcass directions were 
uniformly distributed between 0° and 360°. The search area was confined to a fairly large turbine pad and a moderately wide 
access road, where the visibility was good and search conditions were easy. Carcasses were scavenged and removed from the 
field with persistence times randomly distributed as Weibull with shape = 0.64 and scale = 1.705, with median persistence 
time of 1 day and 90 percent of the carcasses removed within about 6 days. Searches were conducted on the road and pad area 
out to 150 m from the turbine every 5th day over a period spanning 150 days. Searcher efficiency for a carcass in the first search 
after arrival was 80 percent and 100 × 0.8 × 0.75k-1 percent on the kth search. Results for one set of 1,000 carcasses are shown in 
figure 4.1.

For each simulated dataset with 1,000 carcasses, ddFit from the dwp package was used to fit a gamma distribution to the 
dispersion of the recovered carcasses. Then, a 90-percent confidence interval for the probability that a carcass would lie in the 
searched area was calculated using estpsi, a 90-percent confidence interval for the fraction of carcasses lying in the searched 
area was calculated using estdwp, and the actual fraction of carcasses lying in the searched area was recorded. The process 
was repeated 1,000 times to create 1,000 confidence intervals for dwp calculated using estdwp and 1,000 for ​ψ​ using estpsi. 
Following this process, each simulated 90-percent confidence interval should have a 90 percent chance of including the actual 
fraction of carcasses in the searched area.

The proportion of intervals that do include (or “cover”) the actual parameter (namely, the fraction of carcasses inside the 
searched area) is referred to as the coverage and is an essential test of estimator performance. Figure 4.2 displays 250 simulated 
confidence intervals for the fraction of carcasses lying in the searched area according to estpsi and estdwp estimators. 
The confidence intervals based on​ ​estpsi appear to be too small and routinely miss the true dwp. This is wholly expected 
because ​ψ​ is the probability of a carcass lying inside the searched area rather than the actual, realized fraction of carcasses lying 
inside the searched area and is inherently much less variable than dwp. Coverage for the nominal 90-percent confidence intervals 
from estpsi was only 26.8 percent. This is not a problem with estpsi or the calculation of ​​ ̂  ψ ​​; rather, it is a confusion of ​ψ​ 
as dwp and an attempt to use ​ψ​ to do dwp’s job. By contrast, coverage for the nominal 90 percent confidence intervals based 
on estdwp was 90.5 percent, which is as close to 90 percent as can be expected for even a perfect estimator in such a small 
simulation.

1Credible interval is a Bayesian analog to the confidence interval of classical statistics. Credible intervals for MA given XA and Ψ can be calculated in the dwp 
package using, for example, MCI(postM(x = 2, g = 0.2)).
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Figure 4.1.  Simulated carcass dispersion and discovery for simulated dataset of 1,000 bat carcasses.
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Appendix 5.  Accounting for the Uncertainty in Proportion of 
Carcasses Lying Inside the Searched Area—Technical Details

To be able to use the software effectively, it is not necessary to understand the details of how the dwp package accounts for 
the uncertainty in its estimate of proportion of carcasses lying inside the searched area (dwp). The details are offered here for 
completeness.

The uncertainty in estimated dwp (​​ ̂  dwp ​​) given the number of carcasses in the searched area (min) and the probability of a 
carcass lying in the searched area (​ψ​) is accounted for by sampling from the posterior distribution of the number of fatalities (M) 
given min, and ​ψ​ or min, more precisely,

	​ Pr (M ​ =  m| ​m​ in​​, ψ ) = ​ 
Pr(​m​ in​​​|​​M ​ =  m, ψ ) Pr​(M ​ =  m)​

   ____________________________   
​∑ m​ ​​ Pr(​m​ in​​​|​​M ​ =  m, ψ ) Pr​(M ​ =  m)​

​​� (5.1)

where
	​min ∼ binomial​(M, ψ)​​ and ​Pr​(M)​​	 are the integrated reference prior, ​M  ∝ ​ √ 

_
 ​(M + 1)​ ​ − ​√ 

_
 (M ​) ​(Berger and others, 2012; 

Dalthorp and others, 2017).

In practice, ​ψ​ is not known but estimate using ddFit from the dwp package. The uncertainties in ​​ ̂  ψ ​​ and ​M ∣ ​(ψ, ​m​ in​​)​​ are 
assessed through a three-step process:

1.	Simulate the regression parameter estimates from the fitted generalized linear model as multivariate normals (Nelder and 
Wedderburn, 1972) to account for uncertainty in the fitted model (using ddSim, which is called by estpsi but can be 
called directly if desired);

2.	 Integrate the simulated models over the searched area (estpsi) to account for uncertainty in ​​ ̂  ψ ​​; and

3.	Calculate a simulated ​​​   dwp ​​ i​​  = ​  
​m​ in​​ _ 

M​|​​​(​m​ in​​, ​   ψ ​ )​
​ ​for each simulated value of ​​ ̂  ψ ​​, in using a random draw from the posterior 

distribution of ​​ M​|​​​(​m​ in​​, ​   ψ ​ )​ ​​.

The vector of estimated dwp values generated in this way incorporates the uncertainty in ​​ M​|​​​(​m​ in​​, ​   ψ ​ )​ ​​, yielding accurate 
confidence intervals for dwp.

Proportion of Carcasses Lying Inside the Searched Area and the Estimation of 
the Number of Fatalities

After being properly formatted (using the function exportGenEst), the estimated dwp can be used with GenEst to 
estimate total mortality. At a site with a single search class with a single turbine, a simplified version of the model1 for estimating 
M is​ ​ ̂  M ​  =  X / ​(​   g ​ × ​   dwp ​)​​, where X is the number of carcasses found, ​​ ̂  g ​​ is the estimated detection probability for carcasses lying 
in the searched area during the span of the monitoring field season, and ​ ​ ̂  dwp ​​ is the estimated proportion of carcasses lying in the 
searched area.

Note that ( )




ˆˆ ˆ/ /ˆ /
in

X gM X g dwp m dwp
dwp

= × = = , which incorporates both the uncertainty in estimating the number of  

carcasses inside the searched area (​​m​ in​​​) and the uncertainty in the estimated proportion of carcasses lying in the searched area 
(​​ ̂  dwp ​​). Thus, ​​ ̂  M ​​ accounts for the two major sources of uncertainty discussed previously, and in theory, it should give accurate 
confidence intervals, so that a 90-percent confidence interval should have a 90-percent chance of including M.

1The estimator for M that is used in GenEst is difficult to write down succinctly. Readers interested in finer detail are directed to the GenEst technical manual 
(Dalthorp, Madsen, and others, 2018).
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To verify the accuracy, we ran a simulation of the processes of carcass deposition and discovery, field trials for estimating​ g​, 
and distance modeling to estimate dwp. Then, we used GenEst to estimate mortality for each turbine and the total for the site. We 
tallied the number of 90 percent confidence intervals that included M, calculated the coverage as the fraction of the confidence 
intervals that included M, and compared the coverages with the target coverage of 90 percent. The parameters for the simulation 
scenarios:

Simulation:
1.	Generate carcass distances for M = 300 or 1,000 carcasses as ​gamma​(α  =  1.774, β  =  28.17)​​.

2.	Arrival at site with three turbines, with layouts as in figure 5.1.

3.	Searches within squares with side = 240 meters on days = 0, 5, ..., 150.

4.	Weibull persistence with parameters:

•	 Easy visibility: ​α  =  0.64​, ​β  =  1.705​

•	 Moderate visibility: ​α  =  0.64, β  =  7.37​

•	 Difficult visibility: ​α  =  0.64, β  =  9.47​

5.	Searcher efficiency with parameters:

•	 Easy visibility: ​p  =  0.8​, ​k  =  0.75​

•	 Moderate visibility: ​p  =  0.3​, ​k  =  0.75​

•	 Difficult visibility: ​p  =  0.15​, ​k  =  0.75​

6.	Summary parameters

•	​ ψ​ = 0.898, 0.254, 0.0967 for turbines t1, t2, and t3, respectively.

•	 g = 0.283, 0.285, 0.179 for search classes E, M, and D, respectively.
The estimated coverage probabilities range from 85 to 95 percent for all combinations of mortality (​M  =  300​, ​1,000​) and 

field trial carcasses (​n  =  10, 20, 100​) at all turbines and the site as a whole (fig. 5.2), with a single exception. Coverage for total 
mortality for the site as a whole when n = 10 and M = 1,000 was 84.8 percent, with 14.8 percent of the confidence intervals 
missing high (that is, ​​​   M ​​ lwr​​  >  M​) and 1.8 percent missing low. This indicates a tendency to slightly overestimate the total 
under these conditions. With discrete random variables (M and n), coverage probabilities for 90 percent confidence intervals 
are guaranteed to differ from the nominal 90 percent except for in rare circumstances, so the small deviations from the target 
coverage is neither a surprise nor cause for alarm, especially when n = 10 (Madsen and others, 2020). When M = 1,000, the 
confidence intervals appear to be slightly too wide at turbine 3, as coverages approach 95 percent, with approximately equal 
probability of the confidence interval missing high or low (fig. 5.2).
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Figure 5.1.  Schematic showing search areas for three turbines.
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