
NERC Marine Renewable Energy Knowledge
Exchange Program

Appendix 2: Software Instructions

How to run the PLABuoy electronics and analyse collected data

Jamie Macaulay*1, Jonathan Gordon1, Doug Gillespie1, Chloe Malinka1,

Mark Johnson1, Simon Northridge1

1Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews,

St Andrews, Fife, KY16 8LB, UK

*jdjm@st-andrews.ac.uk

1 Introduction
Here we describe two sets of software. The first (sections 2 - 4) are programs related to the

collection of data in the field. This primarily focuses on how to set up the cRio DAQ system to record

multi-channel WAV files. The second (section 5) is a tutorial on to the use of PAMGUARD routines for

post processing multi-channel recordings and to determine georeferenced 3D tracks of odontocetes.

2 Field Software

2.1 Setting up the cRio
The National Instruments cRio computer forms the core of the PLABuoy’s recording system. Two

groups of software are required to set up the cRio. These are;

 NI-RIO device drivers and NI DAQMX – allows users to communicate with cRio, change IP

addresses and install software on device. The NI utility program DAQmx also contains useful

software and we recommend installing it.

 PuTTy and/or Eclipse with Remote Systems Explorer add on – both programs can be used

to access the NI Real Time Linux OS on the device, navigate through directories and

send/receive commands. PuTTy is simple and reliable and hence we recommend its use

here.

Download software from relevant websites and install on a computer.

 PuTTy: http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

 Eclipse: http://www.ni.com/download/labview-real-time-module-2014/4846/en/

 cRio Drivers: http://www.ni.com/download/ni-rio-14.5/5129/en/

 NIDAQMX:http://www.ni.com/nisearch/app/main/p/bot/no/ap/tech/lang/en/pg/1/sn/catn

av:du,n8:3478.41.181.5495,ssnav:ndr/

After the NI-RIO drivers are installed, install NI Linux Real Time OS and set up the cRio.

Comprehensive instructions can be found on the National Instruments website.

https://www.ni.com/getting-started/set-up-hardware/compactrio/controller-software

A good forum for any issues and also a source for comprehensive tutorials on many aspects of NI

Linux Real Time is at:

https://decibel.ni.com/content/groups/ni-linux-real-time?view=documents

Once the Linux Real Time OS has been installed on the cRio it can be configured to acquire data

through one or more NI 9222 cards.

http://www.ni.com/download/ni-rio-14.5/5129/en/

Several files need to be added and code compiled for the FPGA and a daemon must initiated in order

to configure the cRio for recording. Note: NI 9222 modules should be installed onto the chassis by

this point.

There is an online repository within source forge which currently holds all programs related to the

cRio. This is located at: https://sourceforge.net/projects/plabuoy/.

 In the online repository for the PLABuoy there is a zip name ‘cRio DAQ’ which contains four files;

 cRioDAQC - the compiled C code for the PLABuoy which handles the recording,

communication and watchdog processes involved in the cRio.

 cRioDAQSettings.txt - the settings file which allows users to change basic settings on the

cRio. (Note this is currently not used but maybe utilised in newer version of cRioDAQC)

 cRioDaemonScript – a shell script which automatically runs cRioDAQC when the cRio is

started and redirects output messages to a file.

 libsndfile.a – a library for recording .wav files (originally from http://www.mega-

nerd.com/libsndfile/)

 .lvbitx – two compiled programs which run on the cRio’s FPGA. Note each is for a different

model, one for a cRio 9068 and the other for a cRio 9067.

Create a directory named /home/cRioKE and copy all the files listed above into it.

(Several programs can be used for accessing the Linux Real Time OS on the cRio. PuTTy allows

remote terminal access and Eclipse remote systems explorer provides an easy to use GUI. Both are

freely available online. They require the IP address of the device which can be found using NIMAX

software.)

The cRio is now ready to run the cRioDAQC program; this will record acoustic and GPS data to a hard

drive and allow users to interact with the system through a tablet or laptop.

To begin, simply navigate to the folder containing the program e.g. in the console enter cd cRioKE.

Enter ls to check you are in the correct directory.

https://sourceforge.net/projects/plabuoy/
http://www.mega-nerd.com/libsndfile/
http://www.mega-nerd.com/libsndfile/

Figure 1. Using PuTTy to log into the cRio Linux Real Time OS and show contents of the folder containing code to run the
cRioDAQC program.

Then type. /cRioDAQC to start the cRioDAQC program. The program will ask for a command.

Type help to see a list of commands. (Commands can also be sent to the cRio through its network

ports.)

Figure 2. The cRioDAQC program can be controlled through a console. Commands can also be sent over a network, i.e.
by using PLABuoyInterface software.

To start recording simply type start.

You should see frequent updates begin to scroll down the screen. Error messages indicate an issue,

such as the hard drive not being plugged in or the occurrence of FPGA faults.

Note: a good indication the device is working is to check that the hard drive light (if one exists) is

blinking i.e. data are being written to the drive.

2.2 Setting up the runtime Daemon

When using the PLABuoy in the field, it is impractical to start a C binary from a console each time the

cRio is switched on and off. Thus, it is necessary to run the C code (cRioDAQC) as a Daemon, i.e. a

program that automatically starts when the cRio starts. To do this it is necessary to install

cRioDaemonScript (in folder /home/cRioKE) as a start-up script. Log into the cRio using PuTTy or

equivalent and perform the following commands.

1) Navigate to the directory containing the start-up script, e.g. cd cRioKE. Check the start-up

script is actually there using ls.

2) Make the start-up script executable chmod +x cRioDaemonScript and check it works by

typing /home/cRioKE/cRioDaemonScript start. The program should start outputting to a

log file in the same folder.

To stop enter /home/cRioKE/cRioDaemonScript stop. A message should appear confirming

the application has stopped.

(If located in a folder other than /home/cRioKE or the script name is altered then substitute

se the directory the script is located in and/or appropriate script name e.g.

Directory/script_name start)

3) The next stage is to install the script. The script should be installed so that it is nearly the last

thing to start on cRio start up.

Enter cp cRioDaemonScript /etc/init.d to copy the script to the script directory. Next enter

/usr/sbin/update-rc.d -f cRioDaemonScript defaults 99 0. The script is now installed and

will start cRioDAQC on start up.

Tip. Occasionally you may want to start the cRio and stop the script from running. To do this

enter/etc/init.d/cRioDaemonScript stop. To uninstall the script completely use /usr/sbin/update-

rc.d -f cRioDaemonScript remove. The NI website contains a general tutorial on installing start up

scripts ‘Installing Startup Scripts on NI Linux Real-Time’ (https://decibel.ni.com/content/docs/DOC-

38960)

The cRio is now ready for deployment. Note that the cRioDAQC program does not start recording

automatically, it simply starts and waits for commands. To initiate recording you need to either send

a ‘start’ command to the program or through a network to the cRio. The PLABuoyInterface program

will do this automatically.

3 Setting up the cRio Development Environment
In order to alter the source code on the cRio two programs are required

 National Instruments LabView and Labview FPGA module – a graphical programming

language which allows users to compile code for the FPGA.

 Eclipse. A free and open source IDE which can be used to alter the C/C++ source code of

cRioDAQC program.

3.1 LabView: Programming the FPGA
The cRio contains an FPGA chip, a specialised processor for signal processing. FGPA chips are ideal

for the extremely fast digital signal processing tasks, such as recording multiple channels of high

frequency acoustic data or calculating FFTs. The FPGA in the cRio communicates directly with the

DAQ modules and then passes data to programs running on the ARM chip.

In the case of the PLABuoy the FPGA needs to request data from the NI9222 cards, package samples

into an appropriate format and send to a FIFO buffer which can be accessed from a the cRioDAQC

software running on the Linux OS. It also reads temperature sensors and controls LEDs.

National Instruments have created LabView FPGA, a high level design tool to program the cRio’s

FPGA. This allows for relatively inexperienced users to program the FPGA. As part of the PLABuoy

project we have created a LabView FPGA program which records data from two NI9222 cards.

Operators can use this without a LabView licence. This guide demonstrates how to set up a

LabView system to compile FPGA code for a cRio for those needing a different configuration. It

should be noted that we have used cRio 9068 and 9067 models as development machines. Other

cRio models are very similar but LabView code may need to be slightly altered to run on them.

3.2 Setting up the FPGA

The online code repository for the PLABuoy contains a folder named ‘LabView FPGA’. Inside this are

several files, one of which is a LabView project cRio_Project.lvproj. Open this in LabView FPGA.

The project contains two potential targets (cRio devices), a cRio 9068 and cRio 9067. You can add

additional targets/cRio models easily (Figure 3).

Figure 3. A Labview FPGA project containing two targets, a cRio 9067 and cRio 9068.

Within each target is a .vi file (e.g. NI_9222_Anologue_DAQ2_FPGA_9067.vi) which contains the

code that runs on the FPGA. The code is very basic. It simply acquires measurements from the

NI9222 DAQ cards at a specified sample rate, combines the measurements into an array and sends

this to a FIFO buffer. This FIFO buffer can then be accessed by code running on the cRio’s ARM

processor. Opening the .vi file will bring up the LabView code used to program the FPGA as shown in

Figure 4.

Figure 4. Example of the block diagram for the cRio’s FPGA.

Different cRio devices may require slight alterations to the code. For example, the LEDs on the 9068

and 9067 require slightly different inputs to change colour. Therefore a separate .vi is provided for

the cRio 9067 and 9068, although the core code is almost identical. If using a model other than

9067/8 the .vi may require slight alterations; however the main body of code will remain much the

same. A good explanation of how the general FPGA code works can be found at

http://www.ni.com/tutorial/14532/en/ (31/08/2015).

To compile code simply click the arrow button (Figure 5). You will then have the choice to use a local

compile server or the National Instruments cloud based system (Note, you will need have installed

Xilinx compilation tools from NI to use a local compile server. Otherwise a subscription for NI cloud

based services will be required). Choose your preference and click OK. The compile process will then

begin (Figure 5).

http://www.ni.com/tutorial/14532/en/

Figure 5. Compiling LabView code for the FPGA. This can take upwards of 30 minutes.

During the compile process a .lvbitx file will be generated You can view the file by expanding the

Build Specifications section in the project. The .lvbitx file is essentially the compiled program for the

FPGA and is required for the cRio to run cRioDAQC. For the FPGA to interact with the compiled C

program a C library is also required. This is generated by simply right clicking on

NI_9222_Anologue_DAQ2_FPGA_9067.vi and selecting Launch C API generator (Figure 6).

Figure 6. The LAbView software can generate user specific C libraries which interact with the Labview FPGA code.

The C API generator will generate 4 files. Ignore NiFpga.c and NiFpga.h. These have already been

integrated into the C code in cRioDAQC and are identical for all generated C APIs. Open the

remaining C header file e.g. NiFpga_NI_9222_Anologue_DAQ2_FPGA_9067.h. This should look

something like Figure 7.

Tip: If using another cRio model and therefore a slightly different .vi you will need to hardcode this

header file into the cRioDAQC program.

Figure 7. The generated C library header. A newly-compiled FPGA .lvbitx file will have a unique serial number which
should be copied into the cRio’s settings file.

The only item needed form this file is the FPGA signature, highlighted in red in Figure 7. Copy this

into the settings file.

Remember to copy the .lvbitx file onto the cRio e.g. /home/cRIoKE and make sure its path

corresponds to that in the cRio settings file.

3.3 Programming C/C++ for cRioDAQC
National Instruments maintain a bespoke version of Eclipse which can be used to develop C/C++

applications for the cRio. This can be downloaded from the National Instruments website. Once this

has been downloaded a project for a cRio can be created by following a tutorial on the National

Instruments website.

In order to access the most recent source code for the cRioDAQC project SVN tools must be added to

eclipse and the project downloaded from the online repository.

The next section describes how to get a project up and running in Eclipse and then compile for a cRio

target.

3.3.1 Download cRioDAQC from SVN
Install SVN tools.

In Eclipse go to Help->Install New Software…In the dialog which appears select the appropriate

update site for eclipse e.g. Kepler – http://download.eclipse.org/releases/kepler. In the list of

optional add-ons which appears, expand Collaboration and select all SVN tools (Figure 8).

Figure 8. The Eclipse software installer. You need to download the Eclipse SVN software in order to download source
code form the PLABuoy SVN repository.

Click Next and install the selected add-ons. Eclipse should prompt for a restart, if not restart Eclipse

anyway.

http://download.eclipse.org/releases/kepler

Once eclipse has restarted exit the welcome screen. Enter the C/C++ view and right click on the Project

Explorer panel and select New->Other… In the Wizard dialog expand SVN and select Project from SVN

(Figure 9).

Figure 9. Once SVN tools have been installed create a new project from SVN.

SVN will then prompt further installation of software (Figure 10). Click through the installation process

and Eclipse should restart again; if this does not occur manually restart Eclipse.

Figure 10. Installing SVN plugin for Eclipse. This allows users to download source code from the online PLABuoy repository.

Create a new SVN project again using the same process as in the previous step. This time all SVN

should have been installed properly. Create a new repository location in Eclipse (Figure 11). The

repository location is

o svn+ssh://svn.code.sf.net/p/plabuoy/svn-code/cRio_Daq_cpp (Read/Write)

o svn://svn.code.sf.net/p/plabuoy/svn-code/cRio_Daq_cpp (Read only)

Figure 11. Setting the repository location in Eclipse to create a new project.

Click Next. Eclipse will validate the repository. (Note: For read and write access you must have a

Source Forge account and be added as an administrator to the project. Please contact SMRU

(jdjm@st-andrews.ac.uk) if these access privileges are required.)

Once validated the Select Resource dialog will appear (Figure 12).

Figure 12. Selecting the correct folder to download C++ code for PLABuoy,

Click Browse, expand cRio_Daq_cpp, expand trunk and select the cRio_DAQ project. Click OK and

then click Finish. In the next dialog choose an appropriate name for the project and click Finish. The

project will now download.

3.3.2 Set up the C++ Build Environment
Now we need to change some build settings.

Right click the project and select Properties. This will bring up the project properties page.

The first thing to do is to connect up the relevant external libraries. In the project properties dialog

expand C/C++ Build and select Settings. Under Cross GCC Compiler select Includes (Figure 13).

Figure 13. To get the C++ code to compile properly in Eclipse some build settings have to be changed, .

In the include paths (-I) table click the add button.

In the dialog select Workspace… and within the Folder selection dialog browse to

cRioDaqC/external/include.

Figure 14. External libraries need to be linked to.

Click OK and close the dialog. Repeat the process for Cross G++ Compiler. Under Cross G++ Linker

select Libraries. In the Library search path (-L) table click the add button, select Workspace… and in

the Folder selection dialog navigate to cRioDaqC/external/lib (Figure 14).

Next in Cross GCC Compiler->Symbols add CRIO to the Defined Symbols (-D) table and WINDOWS

to the Undefined Symbols (-U) table (Figure 15). Do the same in Cross G++ Compiler -

>Preprocessor.

Figure 15. Make sure Cross GCC Compiler->Symbols settings looks like this screenshot.

Now tell the compiler to include libraries from the lib folder.

Go to Cross G++ Linker -> Libraries. In the Library search path (-L) table select the add button and

add a new path to cRioDAQC/external/lib. In the Libraries (-l) table add pthread and sndfile if not

already there (Figure 16).

Figure 16. Make sure the compiler knows which external libraries to link to.

3.3.3 Connecting the cRio
Connect the cRio to the computer, switch on and open NIMAX. In NIMAX expand Remote Systems

and select the cRio. Click the Network Settings tab and note the IP Address (Figure 17). Copy the IP

address.

Figure 17. NI Max software allows you to chage the IP address settings of the cRio. It also has a host of handy features to
communicate with cRio devices.

Next the cRio needs to be connected to Eclipse. Select the Remote System Explorer view and click

Define a connection to remote system (Figure 18)

Figure 18. Eclipse can remotely connect to a cRio. You can use the eclipse remote system explorer to connect to
difference devices.

In the dialog which appears select SSH only (Figure 19). Linux can also be selected but SSH shortens

the setup process.

Figure 19. Connecting to a cRio. Select SSH Only. (You can also select Linux but this goes through some unnecessary
steps)

In the new Connection Dialog copy the IP address into the Host name text field. Note that you can

also use the hostname of the cRio instead of the IP address (Figure 20). Click Finish.

Figure 20. Eclipse needs to know the IP address of the cRio to connect remotely. The IP address can be easily found using
NIMAX software.

In the Remote Systems pane you should now be able to browse through the cRio’s file system

(Figure 21). Note that you may need to enter a password and username. The default username is

admin and default password is blank. You can change the password in NIMax software.

Figure 21. The remote system explorer is a GUI which allows users to browse through the cRio folder system. There is
also a console which can be used instead of PuTTy.

Next we create a run configuration which will run a C executable on the cRio. At this stage you

should have created a cRioKE folder with files from the online repository as detailed in Section 0.

In Eclipse, select Run->Run Configurations…

In the Run Configurations dialog right click on C/C++ Remote Application and select New…

In the Connection drop down menu select the remote connection and fill in the dialog as shown in

Figure 22.

Figure 22. The run configuration dialog allows users to configure the C executable to ruin the cRio rather than the
development machine.

Click Apply and then close.

Next build the project by selecting Project-> Build Project. Finally to run, click on the run button. The

application should start running on the cRio. In order to begin recording, make sure a hard drive is

attached to the cRio and type start into the console.

Figure 23. The cRioDAQC source code in Eclipse. The Console is used to type commands and view status output.

You are now ready to begin adding to or improving the cRioDAQC source code (Figure 23).

4 Data Analysis Tutorial
The field data collected using the PLA Buoy will consist of multi-channel (8 in this case) .wav files,

GPS txt files collected by the cRio and Open Tag data in a series of .DSG files.

Analysis is split into three stages.

1) Modelling the movement of the array. The positions of hydrophones are modelled and a

time series of hydrophone positions is created. The heading, pitch and roll of the tetrahedral

array will be required to determine accurate bearings to animals.

2) Extraction of clicks. Acoustic data are analysed for animal vocalisations. Our examples are of

porpoises but dolphin clicks and some whistle vocalisation can also be localised with useful

accuracy.

3) Localisation. The modelled hydrophone positons and detected vocalisations are analysed

together to determine the locations of animals.

4.1 Modelling array Movement

4.1.1 Calibration of IMU units

4.1.1.1 Movement Calibration

Before any analysis is undertaken the OpenTag or other IMU sensors must be calibrated. Movement

sensors require a magnetometer calibration to compensate for distortions in the magnetic field

around the IMU, a gyroscope calibration to zero gyroscope sensors and pitch calibration to

compensate for the fact that IMU units may not be completely vertical when the array is vertical

through misalignment.

The magnetometer calibration is performed in the field, the IMU units must be spun through a range

of angles in order to calibrate the magnetometer. Ideally this would be performed underwater, with

the IMU units attached the array. As this is impractical, the units should be spun close to their

attachment point away from any electrical wires or metal objects which could distort results. It is

often difficult to get away from such items on a small vessel so it may be sensible to perform

calibration on land nearby, e.g. on a beach or in a field (stay away from power lines). Several

programs to calculate and compensate for magnetic distortions are available. We used the OpenTag

MATLAB library and also created our own our own library in Java.

A gyroscope calibration is performed by leaving the device perfectly stationary. All gyroscope

sensors should read zero and calibration values are therefore determined by simply taking the

average reading for each sensor over the period the IMU was stationary. This must be done on land

and should be repeated every few days.

Figure 24. Magnetic calibration of an Open Tag performed in PLABuoy Hydrophone software. The green/blue represent
uncalibrated values and the red dots, which should form a sphere, represent calibrated values.

Once the magnetometer and gyroscope calibrations have been performed the Euler angles of the

IMU can be calculated. We used a custom MATLAB script from Madgwick (Madgwick et al. 2011)

(http://www.x-io.co.uk/open-source-imu-and-ahrs-algorithms/) to calculate Euler angles from raw

sensor data. We also created our own Java library for the Madgwick algorithm and this is available

online (http://www.x-io.co.uk/open-source-imu-and-ahrs-algorithms/). Euler angles, the heading

pitch and roll of the tags are used to model the orientation of the array.

Because the circuit boards or the IMU components themselves may be attached at a slight angle to

the array, the pitch and headings are likely to contain some systematic offsets. As heading is the

most inaccurate measurement, it is likely any offset is trivial compared to the units poor precision,

however this not the case for errors in pitch.

To measure pitch offset, the tag should be oriented perfectly vertically while measurements are

taken. We achieved this by hanging portions of the vertical array heavily weighted in a stairwell. It is

http://www.x-io.co.uk/open-source-imu-and-ahrs-algorithms/

important that the tag is in the exact configuration it would be if deployed as even minor offsets of a

few degrees could contribute to large localisation errors.

4.1.1.2 Time Calibration

The IMU units are not connected to the cRio; they archive data to an SD card. This means they use a

separate clock to that on the cRio. Any clock drifts slightly and hence, after a period of operation, the

cRio and IMU units clocks will no longer be synchronised. It is important to ensure that this drift is

measured, and if large, compensated for.

To measure the drift simply start the cRio and IMU units before the first deployment and tap each

IMU unit against the hydrophone. This will register on the sound files recorded by the cRio and also

the gyroscope on the IMU. Once deployment is complete tap the IMU units against the hydrophones

again.

To determine the time drifts open up the .wav files containing the taps in Audacity

(http://audacityteam.org/) or other suitable sound editing program. Navigate to the taps and

record the precise time of the first tap (Figure 25). Next open the gyroscope data on the IMU (e.g. in

MATLAB) and record the precise time of the first tap which corresponds to the first tap in the wav

file (Figure 26). Do this for all taps made throughout the survey. Plot PLABuoy time against

gyroscope times and calculate the slope of the line to determine the time drift.

Figure 25. The taps of the IMU unit on the hydrophone register in the sound files.

Taps on hydrophone

elements

http://audacityteam.org/

Figure 26. Taps also register on the gyroscope on the IMU. By comparing the time of taps on the IMU and hydrophone it
is possible to determine the time drift.

4.1.2 Movement Modelling
After calibrating the IMUs the next stage in modelling array movement is to determine whether a

model is actually needed at all.

It is fairly simple to work out the error introduced by the array moving off the vertical angle. e.g. If a

porpoise is located d meters and the array and 𝜃 ° off vertical then the error in depth is simply

𝜖 = sin 𝜃 × d

So for a porpoise 100 m from the array and the array 5° off vertical then the error in depth would be

8.74 meters. Open tags can be used to determine the average vertical offset angle, and, based on

this, an analyst can assess whether errors of this magnitude would be significant for a particular

application.

4.1.3 Calculating hydrophone positions

There are two possible strategies to model the array movement

1) Completely ignore it. If movement is deemed insignificant then hydrophone positions can

be simply input into the PAMGUARD array manager as shown in Figure 27. It is assumed that

the main axis of the array, x is 0 and y is 0 and z is the depth of each hydrophone. (The

PAMGUARD convention is y points north, x points east and depth points downwards i.e. 10

m underwater is depth = 10.) Note that, although very easy, this also will not rotate the

tetrahedral array in the correct direction. Therefore co-ordinates will not be properly geo

referenced, although localised dive depths and ranges to animals will be correct assuming

the array has remained near vertical.

Taps on gyroscopes

2) Model positions of both the vertical array and tetrahedral array. A MATLAB script has been

written which can rotate the tetrahedral array and model the position of hydrophones on

the vertical array based on measurements stored on OpenTags or other IMUs. A time series

of hydrophone positions is produced which can be loaded into PAMGuard as detailed in

section 5.2.7.

Figure 27 The PAMGuard array manager can be used to input hydrophone positions.

If movement modelling is needed (i.e. approach 2) then this can be performed in MATLAB utilising

the OpenTag MATLAB library or by using the PLABuoyHydrophone software. The

PLABuoyHydrophone software is capable of modelling array movements, and producing PAMGuard-

compatible outputs. It is also more user friendly and does not require any additional coding. A

configuration for the PLABuoy configuration that we used can be loaded into the

PLABuoyHydrophone software. This can be loaded and then adjusted and saved, e.g. if hydrophone

array spacing is different. An example of PLABuoyHydrophone software modelling shown in Figure

28.

Figure 28. The PLABuoyHydrophone software can be used to model array movement.

5 PAMGUARD Analysis
PAMGuard is the primary analysis software for the PLABuoy. It is used to extract short transient

sounds, classify which of these sounds are likely to be small cetacean clicks and then localise the

position of animals. The following is a tutorial which familiarises users with the PAMGuard modules

used to analyse PLABuoy data. It starts by extracting porpoise clicks automatically from multi-

channel WAV files, moves to localisation from a simple vertical array and finally demonstrates how

to incorporate array movement into analysis and use a more complex array, such as the PLABuoy.

5.1 Extracting Clicks
The first stage in localising the position of porpoises is to extract porpoise vocalisation from the raw

.wav files recorded by the buoy.

5.1.1 Create the Module Structure
Start PAMGUARD in normal mode.

Select File->Add Modules->Sound Processing->Sound Acquisition to add the sound acquisition

module.

This will allow the raw .wav files to be analysed in PAMGUARD.

Next add a click detector. Go to File->Add Modules->Detector->Click Detector. The click detector

module should now appear.

Finally a database (File->Add Modules->Utilities->Database) and binary storage (File->Add

Modules->Utilities->Binary Store) are needed.

Now you have added the modules, the PAMGAURD data model should look like Figure 29. The next

stage is to parametrise the relevant modules.

Figure 29. The data model in PAMGuard should look something like this.

When inputting settings in PAMGuard always start with modules on the left and move towards

modules on the right. In this instance, start with sound acquisition and then move on to the click

detector.

Select Detection->Sound Acquisition… In the dialog box set the audio source to Audio file or

multiple file, select Folder or Files… and choose the folder containing the porpoise .wav files. Now

that the sound acquisition knows it is dealing with 8 channels of data it will require an 8 channel

hydrophone array to be created in the array manager.

Select File-> Hydrophone Array… and use Import to select the eight channel array file for this

porpoise data. For a standard PLABuoy the hydrophone array manager dialog box should look like

Figure 30.

(The xyz coordinates for each hydrophone element can be adjusted as required.)

5.1.2 Set the Click Detector Parameters.
Now set up the click detector. Go to the Click Detection menu on the main screen and select

Detection Parameters…. Clicks need to be detected on all channels so select the check box for all

eight channels. Make sure that no grouping is selected. This is usually a sensible choice for wide

aperture arrays (see note on groups in 5.1.5).

Select the Trigger tab and ensure check boxes are selected for every channel. This ensures that the

click detection algorithm is run on each channel individually. (Figure 31). Click OK.

Figure 30. Hydrophone array manager in PAMGuard.

Figure 31 Make sure the channels are not grouped and all selected in the trigger tab.

5.1.3 Create filters to optimise for Porpoise Click Detection
Next, configure filters to optimise detection of porpoise clicks. There are two filters in the click

detector, a pre filter and digital trigger filter. The pre filter filters the raw sound data used by the

click detector module. To remove low frequency noise a high pass filter set at 20 kHz is ideal. Select

Click Detection-> Digital Pre Filter…. In the dialog which pops up create a high pass Butterworth

filter at 20000Hz (Figure 32).

Figure 32. The digital pre filter should be set to 20kHz, high pass.

After the pre filter, the digital trigger filter should be configured. The digital trigger filter is only used

by the algorithm which searches for clicks. The final saved click waveforms and spectra are taken

from the raw sound data filtered by the pre filter. Since porpoises have narrow band high frequency

clicks it is sensible to trigger on clicks within a narrow frequency band. Hence the digital trigger filter

will be a band pass, from 100 kHz to 150 kHz. Select Click Detection-> Digital rigger filter… In the

dialog which pops up create a band pass Chebyshev filter between 100000 and 150000Hz (Figure

33).

5.1.4 Create a porpoise click classifier
The click detector is now set up to detect clicks in the porpoise frequency range. Even though the

click detector has been optimised for porpoise like vocalisations it will also detect many non-

porpoise transient sounds. To distinguish porpoise vocalisations, click detections from other

transient sounds need to be classified using the PAMGUARD click classifier.

Go to Click Detection-> Click Classification. In the Click Classifier Selection drop down box select

Classifier with frequency sweep. Select New to bring up a new click classifier settings dialog. In the

bottom of the dialog box use the Set Defaults button to create default porpoise parameters (Figure

34). Click OK.

Figure 33. The digital trigger filter should be a band pass between 100 and 150kHz.

Figure 34. The click classifier has default settings for porpoise clicks.

A porpoise click classifier has now been created. To ensure that classifier is applied to data make

sure that the Run classification online and Enable check boxes are selected (Figure 35).

Figure 35 Click classifier manager.

5.1.5 Running
Setup is now complete and PAMGuard is ready to detect porpoise clicks.

To run select Detection->Start and PAMGuard will start analysing data (Figure 36).

Figure 36 The click detector running through the ten channel .wav files should look something like the above.

A note on groups. In many detectors there is the option of ‘grouping channels’. Grouping instructs
PAMGuard to automatically calculate extra information for those channels which have been selected
as belonging to a group. Grouped channels are saved as a single data unit containing information
from each channel. For example, a simple towed array might contain two closely spaced
hydrophones. These two channels are usually grouped in PAMGUARD. If a click is detected on one of
the hydrophones then a waveform clip is also automatically recorded from the other channel and a
data unit is saved containing information on both channels. PAMGUARD can calculate additional
information for any data unit which contains more than one channel of information. For a towed
array, two clicks allow bearing information to be calculated for bearing time displays and target
motion analysis. In general, widely spaced hydrophones are not grouped because the waveform clips,
which have to be at least as long as the time for sound to travel between the elements, would be too
long. This would use up memory and also mean waveform clips contained echoes, and possibly other
clicks from the same or different animals.

5.1.6 Viewing Data
Thus far in this tutorial, PAMGuard has been used to run through eight channels of raw .wav data

and pick out candidate porpoise clicks. All clicks, including classified porpoise clicks, have been saved

in PAMGuard binary files by the binary file module added earlier. These files are around 0.01% of the

size of .wav files and yet contain all information needed to browse through click data and perform

complex tasks, such as classification or localisation, however they no longer contain the raw data

(hence the reduction in size). This section describes how to open Binary files in PAMGuard viewer

mode so that data can be visualised and further analysed.

Start PAMGuard in viewer mode (if using Windows, type ‘pamguard viewer’ into search/Cortana if

you do not have shortcut set up). PAMGuard will ask you to select a database. Select the database

you used in analysing the .wav files.

Next PAMGuard will ask you to select binary files (Figure 37).

Figure 37. Open the binary files you saved.

Select the folder in which binary files were saved when PAMGuard was used in standard mode

(section above). PAMGUARD should now open and a click detector window should be visible.

The display is very similar to that of the Standard PAMGuard program, however, there several

important differences. The scroll bars allow users to navigate through and load new sections of data.

New displays are also available as is additional functionality to annotate clicks and add to events.

5.1.7 Reclassifying clicks.
It may be the case that, the classifier used in section 5.1.4 has missed a significant number of

porpoise clicks. For the purposes of localisation it is often better to have more false positives than

false negatives Thus, it may be desirable to reclassify click detection using a slightly more lenient

classifier. Go to Click Detection-> Re Analyse Click Types… This will bring up the click analysis dialog

box (Figure 38).

Extra scroll bar controls are present in many primary

displays in PAMGUARD Viewer Mode. Click

detections within a certain time period are loaded

into the computer’s memory at any one time and

only these detections are visible in the click detector

display. To move to a time period before or after the

currently loaded data press the blue buttons.

The middle button can be pressed to bring up a

dialog box. Here you can define the period of data

(Duration) to be loaded into memory. The Step Size

defines the ‘jump’ to take to the next section of data

when the blue buttons are pressed. For example

75% means that when a new section of data is

loaded, 25% of the previous section is included. The

Start Time allows you to manually select where to

load the data from.

Figure 38. Reprocessing clicks allows you to tweak classifier settings.

Tick the Reclassify Clicks check box and click on Settings… This will bring up the familiar click

classifier manager from which you can access your classifier settings (Figure 39).

In the click classifier disable the Click Length and Zero Crossing settings. Click OK on the classifier

and Classifier manager to return the Click Analysis dialog. In the Data Options drop down menu

select All Data (Figure 40). This will perform data processing on all binary files rather than just the

click detections currently loaded into memory. Click Start and wait for the processing to finish. The

specified click detections will have been reprocessed with the revised classification parameters.

Figure 39. Changing the click classification settings. In viewer mode it is possible to reclassify clicks.

Figure 40. The batch processing dialog allows users to change re classify and recalculate basic localisation information

for detected clicks

5.2 Localising

5.2.1 Set up the localiser
The Large Aperture Localiser module can be configured to localise animals using click data from any

large hydrophone array, such as the PLABuoy. Because localisation is computationally intensive it is

best to use the large aperture localiser in subsets of data in viewer mode rather than applying it

during the initial analysis run described in the previous section.

First add the Large Aperture Localiser to in PAMGuard viewer mode: go to File->Add Modules-

>Localisers->MEAL localiser. This will add the Large Aperture Localiser to viewer mode.

A new localiser tab will appear (Figure 41)

Figure 41. The MEAL localiser should initially look something like this.

The module display has several different panels (Figure 42)

Figure 42. A diagram of the Large Aperture Loclalisation module in PAMGuard. Numbers denote panels in the graphical

user interface whos function are explained below.

1] Data block selection menu.

This allows users to select which data block to localise detections within. Note: currently only clicks

can be localised.

2] Click time display

Click bearing, click amplitude or ICI (inter click interval) versus time displays can be selected. Users

can manually select the detections to localise from this display.

3] Algorithm selection

Allows users to select the algorithm to use to determine the position of an animals. These include a

fast Hyperbolic Localisation method and more computationally intensive MCMC (Markov Chain

Monte Carlo) methods.

4] Detection match

The detection match display shows which click detections on each hydrophone could belong to the

same animal. In some case there may be some ambiguity as to which detections to include in the

localisation calculation. Users can use this display to select which combination of detections to use

in the localisation.

5] Localiser controls

Allows users to localise a selected detection. Also allows users to batch process either selected time

intervals or all the data.

6] Map

3D representation showing hydrophone array and localisation results.

7] Algorithm Display

Algorithm specific display showing information on performance of each localisation algorithm.

8] Results

Shows a table of results from all selected localisation algorithms

The top Click Time Display panel contains, by default, a miniature bearing time display. However,

because clicks were not analysed as a group by PAMGuard in the previous section, there is no

bearing information to display. Thus, we can only view amplitude or ICI values on the y axis.

Click on the array on the top left of the display and select Amplitude in the window which appears

(Figure 43).

Figure 43. Because in this case clicks are not grouped, data blocks data can only be viewed on an amplitude vs time

display.

The Click time display panel will now look similar to the main Click Detector bearing time display

(provided that amplitude was also selected for the y axis on that display).

Select Porpoise in the Filter Species box. This tells the localiser to only use classified porpoise clicks

in calculations.

The Map panel displays localisation results and shows the hydrophone array. Right click to drag the

map, left click to rotate and use the mouse wheel to zoom in and out. The display should now

resemble Figure 44

Figure 44. Use the mouse left click, right click and wheel to manipulate the 3D map.

Select a porpoise click by clicking on a click in the Click Time display. The Detection match panel will

change showing a network of possible click combinations. The Detection match panel contains

information on the number of possible time delay combinations. The red circle represents the

selected detection, in this case whichever click has been selected in the Click time Display. This

selected detection is the primary detection and the hydrophone on which it was detected is

designated the primary hydrophone.

In order to localise the position of an animal this same detection needs to be found on other

hydrophones; to do this PAMGuard searches a time window before and after the time of the primary

detection; time windows are represented in the panel by grey lines. Each hydrophone will have a

different time window depending on how far it is away from the primary hydrophone. It is possible

that a time window will contain more than one detection.

In the Localisation Map (Figure 45) the blue dots represent the possible matches between the

primary click and other detections within the appropriate time window for each hydrophone. Each

blue line represents a possible combination of detections of which only one will contain only

detections which correspond to the primary detection. The number of possible combinations is

shown at the top of the window.

Figure 45. The number of possible time delay combinations is displayed in the Detection match panel. Lines represent

each combination and the red dot represents the currently selected detection.

In the next section of the tutorial we will use the vertical component of the PLABuoy to determine

an animal’s position. This relatively simple procedure, will reduce the number of time delay

combinations thus computation time and provide information on depth and range to vocalising

animals.

In the localiser controls panel select Options and in the Channels tab deselect channels 6, 7, 8 and 9.

In the Map tab make sure that Use high res. Plot symbols is selected. Click OK.

Reasons for multiple time delay

possibilities

-echoes

-multiple animals

-rapid vocalisations

-widely spaced elements

Figure 46. For this exercise we only need channels 0-5 selected.

5.2.2 Localise a click.
A localisation algorithm must be selected before a localisation can be performed.

Select MCMC in the Algorithm selection panel. The Localise, Localise All, and Stop buttons will

become enabled. Find a click which contains corresponding detections on most other channels and

which has more than one time delay possibility. In the detection match panel such a click should look

something like Figure 47. Remember that only the vertical component of the array is being used and

thus only four channels are displayed.

Figure 47. Select a click which has time delay possibilities roughly similar to this.

The large aperture localiser module allows users to localise using only one of the possible time delay

combination or to localise all combinations and select the best one; that is the combination of time

delays which provides the best results (best fit to the localisation algorithm) and makes most

physical sense.

Click the Localise Button to localise only one combination. You can also select individual combination

in the Detection Match panel.

Figure 48. MCMC produces a circular probability distribution. This is exactly what would be expected from a linear array.

A circular ‘cloud’ will appear on the map similar to that in Figure 48. This cloud corresponds to the

probability distribution of the porpoises’ location calculated by the MCMC algorithm. The cloud is

circular because a linear array will only provide values for depth and range.

Figure 49. Using the map you can view the circle side on. Note it has a well-defined depth.

Align the map horizontally as shown in Figure 49 and it will become apparent that the cloud has a

well-defined and restricted depth. Range to the sound source corresponds to the radius of the circle.

The ability of the MCMC method to indicate these probability distributions is one of its primary

strengths.

The results panel displays summary information on the position of the animal including its depth,

range and corresponding errors.

5.2.3 Localise all Combination
Next try to localise all possible combinations of time delays. PAMGuard will indicate which

combination is most likely to be correct. This is typically how the localiser will operate when run in

automated mode.

Choose Localise All. The localiser will now localise all the possible combinations. Once the localiser

has stopped the localiser module should look something like Figure 50

Figure 50. You can localise all possible time delay combination for a given detection. The result which has the lowest chi

squared value is also likely the correct combination of detections.

The display now shows multiple differently coloured localisation clouds (Figure 50), some which

have the expected circular shape and others that do not. Simply by observing these it will be clear

that some combinations produce better results than others.

Click on one of the clouds. It will turn red along with its corresponding time delay combination in the

Detection Match panel. Clicking on a symbol on the map will also highlight the corresponding

localisation result in the Results panel. The algorithm display panel has an MCMC tab (Figure 51).

When selected this will show a graph of χ2 versus ‘jump iteration’.

Figure 51. The χ2 values of all jumps for all attempted MCMC localisations.

The more quickly this graph reaches a low χ2 value and the lower the final value, the better the time

delay information has fit the algorithm. You can also use this panel to select and highlight

The highlighted series here has the lowest average χ2

(chi squared) value and hence is the best fit result. χ2

is a measure of how similar the observed time delays

are to the theoretical delays which would be

produced from a source at a specific location, in this

case the localised position of an animal. By selecting

it in this panel the corresponding cloud in the map

and time delay combination in the detection match

panel will be highlighted. Selecting the line with

lowest final value of χ2 will usually correspond to the

correct localisation result.

corresponding detection match lines and plot symbols. This is a convenient way of picking the

combination which has the lowest final χ2 value (Figure 52).

Figure 52. You can select 3D shapes on the map and time delay possibilities in the detection match panel.

In the results panel, the result with lowest Χ2 (chi squared) value is ticked by default. This result is

the best fit to the algorithm, i.e. usually the most sensible result which is likely to have been

calculated using the correct combination of time delays. The chosen result can be saved by pressing

Save.

5.2.4 Simplex Localisation
The Simplex algorithm is similar to MCMC however does not show true probability distributions. It is,

however much faster.

Select Simplex in the Algorithm selection panel and compare it to the MCMC algorithm by localising

a few more clicks. The millis column in the results table shows the computational time of each

algorithm (Figure 53).

Figure 53. The simplex algorithm is much faster than MCMC but can be unstable, falling into the wrong position or

iterating to infinity and beyond.

5.2.5 Batch Process Data

The large aperture localiser was designed to automatically process large datasets. To do this Select

Batch Process and tick the Batch Localise box and ensure All Data is selected in the Data Options

drop down menu. Next select Settings (cog symbol)

Figure 54. In viewer mode batch processing can be performed to reanalyse data or perform complex computational
tasks.

In the Batch Process Tab select Use a primary hydrophone box and set the Primary Hydrophone to

be the mid depth hydrophone in the array (Figure 54). Using a primary hydrophone means that only

one channel is used for primary detections. This ensures that localisations are not repeated across

different channels.

Set the Min no. of time delays to 4.

Min. number of delays specifies the minimum number of channels which must have a click detection

within the possible time window for the localisation calculation to proceed?????

Note the number of time delays is related to the number channels by

𝑁𝑐ℎ = 1 +
√1 + 8𝑁𝜏

2

were 𝑁𝜏 is the number of time delays and 𝑁𝑐ℎ is the number of channels. There is no point in

localising a click which was only detected on one other channel, as this only provides one time delay

which would locate the animal on a hyperbolic cone of infinite size which is not useful localisation

information for this application.

Next select the General tab and ensure that Display only lowest χ2 value is selected Figure 55. This

means that only the localisation result with the lowest chi squared value will be saved for those

clicks which have multiple possible delay combinations.

Figure 55. Large Aperture Localiser settings dialog

In the General tab there is the choice of exporting data to a spread sheet. Data are automatically

saved to a database; however it can be convenient to quickly open data in Microsoft Excel or Open

Office. Tick Save to.csv and specify a path using Browse. Click OK.

Now click Start and wait until the data processing is complete.

5.2.6 View results.

When the batch processing has finished a spreadsheet will have been created which contains all

localisation results. These will also have been saved to the database. Using Microsoft Excel or import

in MATLAB and select the chi2 column and filter out any values above 3 (these are unlikely to

provide reliable locations). Now selected the z column and plot a graph of results with time.

Fragments of porpoise tracks should be visible. Some examples of data processed using different

localisation algorithms are shown in Figure 56 and Figure 57.

Figure 56. Your results with the Simplex algorithm should look something like this graph.

This concludes the process of localising the depth and range of animals form raw .wav files. Note

that MCMC produces slightly better results. MCMC, although computationally demanding, fleshes

out an accurate probability distribution for each localisation. It also appears to be less prone to

‘running away’ to infinity, which often happens with the simplex algorithm. This means MCMC

produced both more results and results which have accurate error calculations.

Figure 57. MCMC captures more of the dive.

This concludes the process of localising the depth and range of animals from raw .wav files.

-30

-25

-20

-15

-10

-5

0

16:56:56 16:57:04 16:57:13 16:57:22 16:57:30 16:57:39 16:57:48 16:57:56
D

e
p

th
 (

m
)

Time

-25

-20

-15

-10

-5

0

5

16:56:56 16:57:04 16:57:13 16:57:22 16:57:30 16:57:39 16:57:48 16:57:56

D
e

p
th

 (
m

)

Time

5.2.7 Importing Hydrophone Locations
In many situations you may want to model how the PLABuoy array moves underwater and use a

time series of hydrophone locations in the calculation rather than the assuming the vertical array

and tetrahedral array remain perfectly vertical and static.

Hydrophone locations can be readily imported into PAMGUARD.

Choose Settings->Hydrophone Array->Import Hydrophone Data…This will open up the import

dialog (Figure 58). Click the Browse button and select a .csv file of hydrophone locations. This could

either be an output file from the PLABuoyHydrophone software detailed in section 4.1.2 or could be

a file created using a custom program or script.

The format of a .csv file for import into PAMGuard is as follows: (x,y,z=(0,0,0) is referenced to (0,0,0)

in the PAMGaurd array manager)

Time in

excel date

number

Channel 0

x (m)

Channel 0

y (m)

Channel 0

z (m)

Channel 0

x error (m)

Channel 0

y error (m)

Channel 0

z error (m)

Channel 1

x (m)

Channel 1

y (m)

…

etc.

42116.55 -0.71047 -9.66806 3.186644 0.01 0.01 0.01 3.477375 -8.51075 …

42116.55 -0.644 -9.86795 2.908774 0.01 0.01 0.01 3.565267 -8.79141 …

… … … … … … … … … …

Figure 58. Importing a time series of hydrophone positions.

5.2.8 Geo referencing 3D localisations
In order to geo-reference localisation the geographical location of the array must be known. For this

PAMGuard requires a time series of latitude and longitude values.

To geo reference locations in the localiser the GPS module must added to PAMGuard.

Go to File-> Add Modules-> Maps and Mapping and add NMEA Data Collection, GPS Processing

and Map. A Map tab should appear in PAMGuard (Figure 59).

Figure 59. The Map module in PAMGuard allows users to view recorded GPS data.

To add GPS data go to Detection->GPS->Import GPS Data….

Figure 60. How to select a GPS file in PAMGuard.

In the dialog box open the NMEA file in the Exercise 4 folder (The PLABuoy saves these files as .txt

files). A dialog box will appear asking you to select a date.

Ignore this, tick Use only GPRMC strings and click OK (Figure 61).

Figure 61. Loading GPS data into PAMGuard.

Wait until the GPS data has loaded

Select the map. A “GPS track” should be visible (Figure 62). Use the slider to change time which will

also move the position of the buoy. It may be necessary to use the scroll bars to load more hours of

data into memory.

Figure 62. After successfully importing GPS data it is possible to view the PLABuoy tracks and heading in the PAMGuard

map module.

Now select the Large Aperture Localiser module and find a suitable porpoise detection. In order to

calculated a 3D position data from the tetrahedral array on the PLABuoy must also be used.

Go to settings and select all channels then localise using one of the algorithms. A realistic location

should appear in the results panel (Figure 63). When batch processing latitude and longitude and a

reference latitude and longitude will be recorded in the database and .csv file. The latitude and

longitude are the calculated locations of the sound source (vocalising animal) and the reference

latitude and longitude is the position of the array at that time.

Figure 63. The Large aperture localiser module will automatically import GPS data and convert localisation results to a

real latitude/longitude.

5.3 PLABuoy analysis
Sections 5.1 and 5.2 are aimed at familiarising users with the Large Aperture Localisation module

rather than being a step by step guide on analysing PLABuoy data. To analyse PLABuoy data the

following steps are required.

1) Extract clicks from binary files as described by in section 5.1

2) Set up the localisation module as described in section 5.2.1.

3) Create a time series of hydrophone positions from sensors located on the PLABuoy using

the PLABuoyHydrophone software. Import the hydrophone positions into PAMGuard as

detailed in section 5.2.7.

4) Import GPS data as detailed in section 5.2.8.

5) Check a few localisations manually to as shown in sections 5.2.2 and 5.2.3 to check all

settings are correct.

6) If everything appears to be working, batch process the dataset as described in 5.2.5.

