

Optimizing Permitting for MRE through Data Transferability

Andrea Copping Mikaela Freeman Alicia Gorton

Pacific Northwest National Laboratory

Webinar for the MRE Community September 25, 2018 Online

Today's Webinar

- Introduction
 - Purpose of the webinar
 - Introduction to the topic
- Outreach and Engagement
- Data Transferability Process
 - Framework
 - Best Management Practices (BMPs)
 - Implementation Plan
- Next steps

Barriers to Permitting

- MRE industry perceptions
- Our perceptions of the regulatory community
- ► Annex IV working to bridge these gaps
 - 2018 theme: Data Transferability and Collection Consistency
- Learning as we go...

Data Transferability and Environmental Interactions

- Data Transferability
 - Using data from an already permitted/consented MRE project or analogous industry to be "transferred" to inform potential environmental effects and consenting for a future MRE project.
- What do we mean by "data"?
 - We really mean data and information:
 Could be raw or quality controlled data but more likely analyzed data and information, synthesized data to reach some conclusion, reports, etc.
- Environmental Interactions
 - Collision Risk
 - Underwater Noise
 - EMF
 - Habitat Changes
 - Displacement/Barrier Effects
 - Physical Systems

Outreach and Engagement with the MRE Community

- Held two webinars and a survey with US regulators
- Data can be transferred from:
 - Research studies and monitoring of already permitted projects
 - Other industries with similarities.
- 5 regional regulator Workshops (in-person and online)
- Shared MRE data, understand regulators' needs and willingness to transfer data
- Gathered feedback on Data Transferability Framework
- International workshop with regulators, developers, and researchers

Sample Monitoring Data

Proudly Operated by Battelle Since 1965

Pacific Northwest
NATIONAL LABORATORY

Tidal turbines at EMEC

Sample Monitoring Data

Proudly Operated by Battelle Since 1965

Pacific Northwest
NATIONAL LABORATORY

Regulator Feedback

- Regulators not looking for raw data
- Valued videos, audio clips and other data/information
 - Help increase understanding of potential impacts
- Overall, positive feedback
 - Would help to find data/information easier
 - Liked the idea of having data that is compatible with one another

Data Transferability Process

Framework for Data Transferability

- 1. Brings together datasets from already permitted/consented projects in an organized fashion
- Compares the applicability of each dataset for use in permitting/consenting future projects
- 3. Assures data collection consistency through preferred measurement methods or processes
- 4. Guides the process for data transfer

Framework – MRE Project Archetype

Example: Collision Risk

Stressor

• Collision Risk

Site Condition

Shallow and Narrow Channel

Technology

Tidal Device, Bottom-Mounted

Receptor

MarineMammals

MRE Project Archetype

Guidelines for Transferability

Necessary

Same MREPA and data collected consistently

• Same project size (single or array)

Importan

• Same receptor species (or closely related)

Similar technology

Desirable

Similar wave/tidal resource

Data Collection Consistency

- Consistent processes/units for data collection can increase confidence in transfer of data
- Quality assurance checks on existing data
- Trustworthiness of data: credible, transferrable, dependable, confirmable, and reflexive

Data Collection Consistency

Stressor	Process or Measurement Tool	Reporting Unit	Analysis or Interpretation
Collision Risk	Sensors include: acoustic only, acoustic + video, Other	Number of visible targets in field of view, number of collisions	Number of collisions and/or close interactions of animals with turbines used to validate collision risk models
Underwater Noise	Fixed or floating hydrophones	 Amplitude dB re 1 μPa at 1 m Frequency: broadband or specific frequencies 	Sound outputs from MRE devices compared against regulatory action levels. Generally reported as broadband noise unless guidance exists for specific frequency ranges.
EMF	Source: Cable, other, shielded or unshielded	AC or DC, voltage , amplitude	Measured EMF levels used to validate existing EMF models around cables and other energized sources.
Habitat Change	 Underwater mapping with: sonar, video Habitat characterization from: mapping, existing maps 	Area of habitat altered, specific for each habitat type	Compare potential changes in habitat to maps of rare and important habitats to determine if they are likely to be harmed.
Displacement/ Barrier Effect	Population estimates by: human observers , passive or active acoustic monitoring , video	Population estimates for species under special protection	Validation of population models, estimates of jeopardy, loss of species for vulnerable populations
Changes in Physical Systems	Numerical modeling, with or without field data validation	No units. Indication of data sets used for validation, if any.	Data collected around arrays should be used to validate models.

Monitoring Datasets Discoverability Matrix

- Classify existing monitoring datasets by MREPA, including:
 - Project size (single/array)
 - Stressor and receptor
 - Technology
 - Site conditions
- Used to discover already permitted/consented datasets, based on MREPA, and evaluate consistency of information
- Help transfer data from an already permitted/consented project to future projects
- Will be hosted on Tethys (https://tethys.pnnl.gov/)

Best Management Practices

- ► BMP 1: Meet the necessary requirements in the Guidelines for Transferability to be considered for data transfer from an already permitted/consented project to a future project.
 - Purpose: Ensure minimum thresholds, necessary to have the same MREPA and data collected consistently, are met for transferring data.
- ▶ BMP 2: Determine likely datasets that meet data consistency needs and quality assurance requirements.
 - Purpose: Ensure methods used to collect/analyze data are compatible and will help to determine the validity of their comparison.
- BMP 3: Use of models in conjunction with and/or in place of datasets.
 - Purpose: Encourages the use of numerical models to simulate interactions.
- ► BMP 4: Provide context and perspective for datasets to be transferred.
 - Purpose: Encourages the use of available and pertinent datasets to enhance the interpretation of data and information.

Success of the Data Transferability Process

Regulators:

- willing to accept the premise of data transferability
- apply the principles of data transferability and collection consistency to evaluate permitting/consenting applications
- Device and project developers:
 - recognize the value of data transferability
 - commit to collecting and providing data that are consistent with the collection guidelines and that will best fit the framework and guidelines for collection consistency, quality assurance, and trustworthiness
- Researchers and consultancies:
 - inform themselves of the data consistency requirements and potential use of data collected around MRE devices to ensure that research data are usable for transfer

- Implement plan for data transferability
- Continue to seek input from US and other Annex IV country regulators
- Extend process to other Annex IV countries
- Present process via web-based tool on Tethys
- Convene a virtual group of international representatives from across the MRE community:
 - To share progress in understanding and permitting/consenting MRE projects
 - To provide technical assistance in using the framework and BMPs
 - To gauge the success of the venture

Data Transferability Process Links

Tethys:

https://tethys.pnnl.gov/

- Data Transferability Process:
 - Regulator webinars on environmental effects
 - Data Transferability White Paper
 - Regulator online workshop recording
 - Annex IV workshop documents and report
 - Will host today's presentation and recording https://tethys.pnnl.gov/data-transferability

Thank you!

Andrea Copping

Pacific Northwest National Laboratory andrea.copping@pnnl.gov +1.206.528.3049

Mikaela Freeman

Pacific Northwest National Laboratory mikaela.freeman@pnnl.gov +1.206.528.3071

Alicia Gorton

Pacific Northwest National Laboratory alicia.gorton@pnnl.gov +1.509.375. 6943

