Monitoring at North Ocean Energy Test Site, Newport OR

Belinda Batten

Director, Northwest National Marine
Renewable Energy Center

Newport North Ocean Energy Test Site

WET-NZ and Ocean Sentinel

Potential Environmental Effects

Priority Issues for Investigation

- 1. Static/moving devices & cetaceans Cetaceans could collide with devices or become entangled in mooring lines. Behavioral changes associated with avoiding devices may result in different energetic requirements or feeding opportunities.
- 2. Noise/vibration & fishes, elasmobranchs, sea turtles, and cetaceans May interfere with navigation, communication, foraging, recruitment.
- 3. EMF & elasmobranchs and other organisms Attraction, for example, can distract them away from hunting for prey.
- 4. Static devices & benthic habitats and organisms Potential changes to sediment and water circulation, resulting in changes to the species that utilize that habitat.

Issue 1: Devices and Cetaceans Gray Whale Movement Patterns

PIs: Bruce Mate, Joel Ortega-Ortiz, Barbara Lagerquist

Oregon State University

Marine Mammal Institute

Dec 2007 – May 2008
Observations of gray
whales migrating along
Yaquina Head

Estimations of

- speed
- distance to shore
- bottom depth
 were obtained for each
 tracked individual

Gray Whale Observations

Testing a Gray Whale Acoustic Deterrent

PIs: Bruce Mate and Barbara Lagerquist, OSU MMI

Objective: Deflect movement of gray whales by 500 m using a low-power sound source.

- Moor acoustic device in gray whale migratory path. Circle shows predicted zone of influence
- Transmit sound (1-s signal, 3/min) for 6-hr each day during daylight
- Conduct concurrent shore-based observations of gray whales using theodolite to accurately track position, trajectory, and speed
- Compare results between experimental and control (no sound) periods, as well as 2008 data.

Issue 2: Noise/vibration & fishes, elasmobranchs, sea turtles, and cetaceans

Acoustic Baseline and Characterization at NNMREC's North Test Site

Pls: J.H. Haxel, H. Matsumoto, and R.P. Dziak

Oregon State University

Cooperative Institute for Marine Resources Studies

Pacific Marine Environmental Laboratory

Passive Acoustic Lander Mooring

Methods:

- Lowered to the seafloor (50 m)
- Hydrophones record continuously or on duty cycle (1 Hz – 20 kHz)

Objectives:

- Collect continuous passive acoustic data (~1yr)
- Characterize amplitude and frequency distribution through time of ambient noise field
- ID sound sources

2010 – 2011 Seasonal Variation in Ambient Sound Levels

Other Important Sound Sources

Renewable Energy Center

Acoustic Baseline Results

• Mean broadband sound pressure levels (SPL $_{rms}$) = 113 dB re 1 μ Pa (1Hz - 1kHz)

min SPL_{rms} = 95 dB re 1 μ Pa max SPL_{rms} = 136 – 142 dB re 1 μ Pa

- 10% of observations > 120 dB re 1 μ Pa (MM harassment)
- SPL_{rms} well correlated with significant wave height
 - seasonal variations in ambient noise structure
- Vessel traffic, marine mammals significant sources of transient sound;
 however, low frequency acoustic field dominated by breaking surf noise

Further Research

- Investigate relationships between wave height, wind speed, tidal flow, vessel traffic and 1/3 octave bands SPL
- Establish time series of marine mammal vocalizations by species

Acoustic Monitoring during WET-NZ Test

Methods:

- Technique similar to Bassett et al.
 (2011) for evaluation of WEC in Puget
 Sound
- Calibrated hydrophone from a drifting vessel
- Continuous 50 kHz sample rate
- 4 drifts per recording mission (~ 4 h of data)
- Record baseline data in May 2012

Results:

 One-second SPL values associated with WET-NZ harmonic signals during peak signal to noise ratio intervals (times with the least amount of low frequency contamination) average around 115 dB at 10 m and 112 dB at 85 m.

Issue 3: EMF & Elasmobranchs and other Organisms

EMF Monitoring

PI: Adam Schultz

College of Earth, Ocean & Atmospheric Sciences
Oregon State University

High Definition Wide-Band Receiver

- 1st generation Oregon Wave Energy Trust (OWET) prototype receiver built by SAIC/OSU
- Designed as low-cost test bed/demonstrator capable of detecting ocean wave/swell frequencies as well as powerline frequencies and harmonics
- 3 electric field and 3 magnetic field channels, 32-bit resolution, 1 kHz sampling
- Separate compass, tilt sensors

Baseline Survey at North Test Site

Baseline Survey at North Test Site

1 Hz (E) and 38 Hz (E & B) peaks ubiquitous in coastal Oregon offshore surveys 1 Hz peak may be induced by LEDs flashing at 1 Hz

Magnetic Field Data

Apparent variations in 10-11 Hz spectral peak intensity with offset from WEC/Sentinel

Monitoring Summary at North Test Site

- Gray whales have been surveyed before installation and use the area heavily in their migrations
- Testing of an acoustic deterrent device is underway
- An acoustic baseline of the sound field at the OTF has been established – recordings during deployment are similar to baseline
- Before and after monitoring of the EMF fields surrounding the devices will result in a model of EMF propagation more testing is needed in greater sea state
- Benthic studies to be reported by Sarah Henkel

Thank you

Belinda Batten, NNMREC Director 541.737.9492, belinda.batten@oregonstate.edu

