Part 1: Long-range active acoustic detection, localization, tracking and classification for offshore renewable energy applications and

Part 2: Radiated noise measurements in a high-current environment using a drifting noise measurement buoy

Dr. Peter J. Stein Scientific Solutions, Inc.

PART 1: Active acoustics: Why and why not?

- Why?
 - ➢ If you really want/need to detect, localize, and track an underwater object active acoustics (i.e. active sonar) is the most robust method
- > Why not?
 - The effects of the active acoustic transmissions on marine life
 - Systems often don't work that well for a variety of reasons
 - Systems that work well are generally very expensive and have limited coverage

One-way propagation loss

Propagation loss for different frequencies Spherical Spreading (20 log R + aR)

Common systems for bi-acoustic rdserach

Different categories roughly depending on frequency

Imaging
Generally >400 kHz
Classification possible

Fish-finding
Generally 50-200 kHz
Location and estimation of
bio-mass possible

Longer range detection, localization, and tracking (30-100 kHz)
Robust classification not there yet, bigger targets

Application

Evaluating and mitigating risks of marine hydroturbines

Plan: Integrated Near-field and Far-Field Systems

Swimmer detection systems as a basis for AAM

- An effective AAM for offshore renewable energy applications has pretty much the same requirements as swimmer detection sonar
 - Automatic detection, tracking, localization, and classification of low target strength objects in a shallow water harbor environment
- Swimmer detection sonar systems are fairly well developed, however most are very expensive and classification is still an issue
- SSI has been working since 2002 to develop a cost effective swimmer detection sonar system based on networking simple inexpensive sonar "nodes"
- ➤ The SSI/ORPC AAM program is based on leveraging the on-going SDSN development

Swimmer Detection Sonar Network (SDSN)

Recent Trial Results

Major uncertainties

- Will longer range detection, localization, and tracking systems work in the required environment?
 - High currents?
 - Variable sound speed field?
 - Potentially rocky bottom?
- That is, will it work off Eastport, Maine?

Test installation using existing nodes and ORPC beta

Eastport Testing of Current Node – September 2010

Eastport Drift/Tow Tests

- > Two targets:
 - \rightarrow TS = -5 to +5 dB re 1 m (mid-size whale)
 - ➤ TS = -20 to -15 dB sphere (small odonocete/pinneped) ¬

Large target run

Small target tracker results

New Node

AAM Installation on (near?) ORPC TidGen™ Unit

SSI is now teamed with ORPC to develop AAM for marine hydrokinetic energy applications

Conclusions (AAM)

- There are many active acoustic systems available for mitigation and monitoring
 - Generally high frequency imaging systems and thus limited coverage for the cost
- There is one operational system (I know of) for longer range DLTC of marine mammals (SURTASS LFA HF/M3 Sonar)
- AAM systems are under development which may eventually lead to robust longer-range DLTC of marine mammals and fish (classification will always be difficult)
- Integration of systems will lead to greatest advancements
- Issues related to marine mammal harassment need to be studied and evaluated

PART 2: Radiated Noise Measurements In High Currents

Need to determine radiated noise impacts of tidal turbines

However, high currents make accurate noise measurements very difficult

Moored system

Will be contaminated by turbulent flow noise

Moored system - Flow noise isolation

Turbulent fluctuations stay away from hydrophone

- But calibration gets very tricky due to added frequency dependence
 - Low frequency turbulence still gets through
 - High frequency sound of interest can get absorbed by urethane

Further: Moored system subject to contamination

Local bottom noise sources dominate

> i.e. noise is depth dependent

Maybe suspend hydrophone in water column

Besides getting a little scary

There is also cable strum

- Violent shaking of the cable
 - Noisy (shaking of hydrophone, couplings)
 - Change in depth due to cable shortening and lengthening can lead to pressure fluctuations usually enough to saturate preamplifiers

Solution

- Suspend hydrophone from a drifting platform
- Drift with and without the tidal generator in the path

Feasibility test conducted last fall

Data: Hydrophone suspended from drifting platform

- Very promising, but data still contaminated
- Boat rocking caused noise and hydrophone heave
- Some cable strum due to some differential motion between boat and current (wind also drives the boat)
- A lot of sifting to get even small chunks of good data

Designed and built spar buoy to remove last issues

Tests with spar buoy conducted in July

Conclusions

- High current noise measurements can be made from a drifting spar buoy
- It is very labor intensive and not feasible for continuous long-term monitoring
- OPRC turbine is very quite
 - No incidental harassment authorization (IHA) required
- Plan for tidal generator is to install accelerometers on the unit
 - > Radiate noise will be correlated with accelerations
 - Accelerometers will then provide long-term monitoring of noise levels (also failure detection)

