Characterizing Biological Communities at Marine Renewable Energy Sites

John Horne (jhorne@uw.edu), D. Barbee, K. Fresh, B. Hanson, D. Jacques, A. Kagely, J. Nomura, S. Parker-Stetter, B. Polagye, J. Thomson, and A. Ü

Evolution of the Monitoring Perspective

Impact on devices vs impact of devices

General Challenges for Biological Monitoring

ALD CENTERNIALS

High flow environments

Choice of sampling instruments and survey design

Detecting change and causes of change

Scaling up

High Flow Environments

- Eularian or Lagrangian reference frame?
- Separating turbulence from biology
- Constraints of direct samples
- Lack of previous sampling, knowledge

Instruments & Survey Design

- Baseline or Monitoring?
- Choice of sampling gear(s): direct, indirect Nets: target species/length range?, midwater vs bottom
 - Remote sensors: optics vs acoustics, long to short range
- Temporally or Spatially indexed data?
- Allocation of effort
- Transect/Station layout

Detecting Change

- Potential impacts: distributions, aggregation, avoidance, strike, impingment
- Detect, discriminate, classify, identify(?)
- Pattern or process study?
- What constitutes change?

Scaling Up

- No devices
- Proof of concept (1, 2, a few)
- Commercial production (10's, lots)

Evaluating acoustic technologies to monitor aquatic organisms at renewable energy sites

- Choose acoustic technologies to monitor nekton at hydrokinetic sites
- Collect baseline data on animal distributions and densities through tidal cycles
- Quantify what stationary deployment acoustic data represent
- Formulate metrics to index biomass distribution, size, and flux

Survey Objectives

- quantify the species composition, distribution, and abundance of pelagic fish and macro-invertebrates.
- compare temporally-indexed to spatially-indexed data sets
- recommend methods for future monitoring

Survey Design

Bottom Acoustic Instrument Packages

Multibeam sonar, echosounder, acoustic camera, water current profilers

Acoustic, Midwater Trawl, Seabird, Mammal Survey

Example Acoustic Instrument Data

Multibeam sonar

Splitbeam echosounder

May 11, 2011 18:00 – 18:12

Acoustic camera

Surface Acoustic Distributions

Blue fuzz cloud

Mid-water targets

Turbulence

WOW THAT IS SOME SERIOUS RIP

Bottom targets

Bottom aggregations

Things We Learned

- Autonomous deployments carry risks: no data, limited data, poor quality data, non-traditional deployments
- Autonomous deployments are typically constrained by power (data storage not a constraint)
- Direct sampling is a challenge: tidal flows (to reduce net drag: knotless, spectra)
- Determining a sample, determining change

John Horne: jhorne@uw.edu

Challenges

Met

- Acoustic instruments chosen are representative of technological classes
- Field sampling design provides baseline and comparative data streams

Remaining

- Comparison of stationary to mobile acoustic data streams
- Formulation of metrics for monitoring hydrokinetic sites