TY - JOUR TI - Locomotor design of dolphin vertebral columns: bending mechanics and morphology of Delphinus delphis AU - Long, J AU - Pabst, D AU - Shepherd, W AU - McLellan, W T2 - The Journal of Experimental Biology AB - The primary skeletal structure used by dolphins to generate the dorsoventral bending characteristic of cetacean swimming is the vertebral column. In the vertebral column of the saddleback dolphin Delphinus delphis, we characterize the static and dynamic mechanical properties of the intervertebral joints, describe regional variation and dorsoventral asymmetries in mechanical performance, and investigate how the mechanical properties are correlated with vertebral morphologies. Using a bending machine that applies an external load (N m) to a single intervertebral segment, we measured the resulting angular deformation (rad) of the segment in both dorsal extension and ventral flexion. Intervertebral segments from the thoracic, lumbar and caudal regions of the vertebral column were tested from five individuals. Using quasi-static bending tests, we measured the initial (low-strain) bending stiffness (N m rad-1) as a function of segment position, direction of bending (extension and flexion) and sequential cutting of intervertebral ligaments. We found that initial bending stiffness was significantly greater in the lumbar region than in adjacent thoracic and caudal regions, and all joints were stiffer in extension than is predicted (r2 = 0.554) by the length and width of the intervertebral disc and the length of the cranial vertebral body in the segment. Stiffness in flexion is predicted (r2 = 0.400) by the width of the nucleus pulposus, the length of the caudal vertebral body in the segment and the height of the transverse processes from the ventral surface of the vertebral body. We also performed dynamic bending tests on intervertebral segments from the lumbo-caudal joint and the joint between caudal vertebrae 7 and 8. Dynamic bending stiffness (N m rad-1) increases with increasing bending amplitude and is independent of bending frequency. Damping coefficient (kg m2 rad-2 s-1) decreases with increasing bending amplitude and frequency. Resilience (% energy return) increases from approximately 20% at low bending amplitudes (+/-0.6 degree) to approximately 50% at high bending amplitudes (+/-2.9 degrees). Based on these findings, the dolphin's vertebral column has the mechanical capacity to help control the body's locomotor reconfigurations, to store elastic energy and to dampen oscillations. DA - 1997/01// PY - 1997 PB - The Company of Biologists Ltd VL - 200 IS - 1 SP - 65 EP - 81 UR - http://jeb.biologists.org/content/200/1/65 LA - English KW - Marine Mammals KW - Cetaceans ER -