TY - JOUR TI - Offshore Occurrence of a Migratory Bat, Pipistrellus nathusii, Depends on Seasonality and Weather Conditions AU - Lagerveld, S AU - Poerink, B AU - Geelhoed, S T2 - Animals AB - Bats regularly migrate over the North Sea, but information on the environmental conditions when this occurs is scarce. Detailed information is urgently needed on the conditions under which bats can be expected offshore, as the number of offshore windfarms that can cause fatalities amongst bats in the North Sea is increasing rapidly. We performed ultrasonic acoustic monitoring at multiple nearshore locations at sea between 2012 and 2016 for, in total, 480 monitoring nights. We modelled the offshore occurrence of Nathusius’ pipistrelle in autumn as a function of weather conditions, seasonality, and the lunar cycle using a generalized additive mixed model (GAMM). We investigated which covariates are important using backward selection based on a likelihood ratio test. Our model showed that important explanatory variables for the offshore occurrence of Nathusius’ pipistrelle are seasonality (night in year), wind speed, wind direction, and temperature. The species’ migration is strongest in early September, with east-northeasterly tailwinds, wind speeds < 5 m/s, and temperatures > 15 °C. Lunar cycle, cloud cover, atmospheric pressure, atmospheric pressure change, rain, and visibility were excluded during the model selection. These results provide valuable input to reduce bat fatalities in offshore wind farms by taking mitigation measures.Simple SummaryMigratory bats regularly fly over the North Sea, where the number of offshore wind farms will increase rapidly in the next decades. Information is urgently needed on the timing and the conditions bats can be expected offshore, since windfarms can cause fatalities amongst bats. We therefore collected acoustic data on the presence of bats at four nearshore locations at sea between 2012 and 2016. Modelling the occurrence of Nathusius’ pipistrelle for 480 nights in autumn showed that its migration is strongest in early September, with east-northeasterly tailwinds, low wind speeds, and relatively high temperatures. The species’ migration did not show a strong relationship with other factors, i.e., moon phase, cloud cover, atmospheric pressure, rain, and visibility. Our results provide valuable input to policy-makers to prescribe mitigation measures to reduce bat fatalities in offshore wind farms. DA - 2021/12// PY - 2021 PB - MDPI VL - 11 IS - 12 SP - 3442 UR - https://www.mdpi.com/2076-2615/11/12/3442 DO - 10.3390/ani11123442 LA - English KW - Wind Energy KW - Fixed Offshore Wind KW - Bats ER -